应用比例边界有限元法(Scaled Boundary Finite Element Method-SBFEM)对重力坝进行动态断裂分析。通过数值算例验证了比例边界有限元法计算动应力强度因子的有效性和精度。在频域利用一种新的高阶透射边界对无限地基进行模拟,该透射边...应用比例边界有限元法(Scaled Boundary Finite Element Method-SBFEM)对重力坝进行动态断裂分析。通过数值算例验证了比例边界有限元法计算动应力强度因子的有效性和精度。在频域利用一种新的高阶透射边界对无限地基进行模拟,该透射边界是基于无限域动力刚度矩阵的连分式解形式,具有良好的收敛性和精度。最后对重力坝-无限地基-库水系统进行频域分析,给出了坝体最大拉应力分布和坝踵裂纹应力强度因子的时程变化规律,将最大拉应力计算结果与无裂纹情况下重力坝-地基-库水系统的结果和无质量地基模型的结果进行了对比,对比结果表明该文计算结果比无质量地基模型的计算结果降低20%―25%。展开更多
本文基于比例边界有限元法(Scaled Boundary Finite Element Method)的缩减基函数解法,对结构-无限地基动力相互作用的时域算法进行了改进。通过选择适当的基函数数目,缩减结构-地基接触面上的自由度,以减小卷积积分所带来的计算工作量...本文基于比例边界有限元法(Scaled Boundary Finite Element Method)的缩减基函数解法,对结构-无限地基动力相互作用的时域算法进行了改进。通过选择适当的基函数数目,缩减结构-地基接触面上的自由度,以减小卷积积分所带来的计算工作量,推导了缩减自由度后运动方程的表达式。通过重力坝和拱坝加速度频响曲线的算例,对比了不同程度缩减的基函数和全部基函数对计算精度和效率的影响。结果表明,基函数的缩减可使计算效率明显提高,但精度损失不大。当采用60%的基函数时,计算效率提高5倍,而峰值频响曲线的精度损失却不超过4%。因此,该算法比较适合于大型结构-地基动力相互作用问题的时域分析。展开更多
The concept of structure-soil-structure dynamic interaction was introduced and the research methods were summarized.Based on lots of documents,a systematic summary of the history and current situation of structure-soi...The concept of structure-soil-structure dynamic interaction was introduced and the research methods were summarized.Based on lots of documents,a systematic summary of the history and current situation of structure-soil-structure dynamic interaction research considering adjacent structures was proposed as reference for researchers.The existing matter and the prospect of future research trend in this field was also examined.展开更多
As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of th...As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of the areas of significant development has been the modelling of spudean performance, where the load-displacement behaviour of the foundation is required to be included in any numerical model of the structure. In this study, beam on nonlinear winkler foundation (BNWF) modeling--which is based on using nonlinear springs and dampers instead of a continuum soil media--is employed for this purpose. A regular monochrome design wave and an irregular wave representing a design sea state are applied to the platform as lateral loading. By using the BNWF model and assuming a granular soil under spudcans, properties such as soil nonlinear behaviour near the structure, contact phenomena at the interface of soil and spudcan (such as uplifting and rocking), and geometrical nonlinear behaviour of the structure are studied. Results of this study show that inelastic behaviour of the soil causes an increase in the lateral displacement at the hull elevation and permanent unequal settlement in soil below the spudcans, which are increased by decreasing the friction angle of the sandy soil. In fact, spudeans and the underlying soil cause a relative fixity at the platform support, which changes the dynamic response of the structure compared with the case where the structure is assumed to have a fixed support or pinned support. For simulating this behaviour without explicit modelling of soil-structure interaction (SSI), moment- rotation curves at the end of platform legs, which are dependent on foundation dimensions and soil characteristics, are obtained. These curves can be used in a simplified model of the platform for considering the relative fixity at the soil- foundation interface.展开更多
文摘应用比例边界有限元法(Scaled Boundary Finite Element Method-SBFEM)对重力坝进行动态断裂分析。通过数值算例验证了比例边界有限元法计算动应力强度因子的有效性和精度。在频域利用一种新的高阶透射边界对无限地基进行模拟,该透射边界是基于无限域动力刚度矩阵的连分式解形式,具有良好的收敛性和精度。最后对重力坝-无限地基-库水系统进行频域分析,给出了坝体最大拉应力分布和坝踵裂纹应力强度因子的时程变化规律,将最大拉应力计算结果与无裂纹情况下重力坝-地基-库水系统的结果和无质量地基模型的结果进行了对比,对比结果表明该文计算结果比无质量地基模型的计算结果降低20%―25%。
文摘本文基于比例边界有限元法(Scaled Boundary Finite Element Method)的缩减基函数解法,对结构-无限地基动力相互作用的时域算法进行了改进。通过选择适当的基函数数目,缩减结构-地基接触面上的自由度,以减小卷积积分所带来的计算工作量,推导了缩减自由度后运动方程的表达式。通过重力坝和拱坝加速度频响曲线的算例,对比了不同程度缩减的基函数和全部基函数对计算精度和效率的影响。结果表明,基函数的缩减可使计算效率明显提高,但精度损失不大。当采用60%的基函数时,计算效率提高5倍,而峰值频响曲线的精度损失却不超过4%。因此,该算法比较适合于大型结构-地基动力相互作用问题的时域分析。
文摘The concept of structure-soil-structure dynamic interaction was introduced and the research methods were summarized.Based on lots of documents,a systematic summary of the history and current situation of structure-soil-structure dynamic interaction research considering adjacent structures was proposed as reference for researchers.The existing matter and the prospect of future research trend in this field was also examined.
文摘As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of the areas of significant development has been the modelling of spudean performance, where the load-displacement behaviour of the foundation is required to be included in any numerical model of the structure. In this study, beam on nonlinear winkler foundation (BNWF) modeling--which is based on using nonlinear springs and dampers instead of a continuum soil media--is employed for this purpose. A regular monochrome design wave and an irregular wave representing a design sea state are applied to the platform as lateral loading. By using the BNWF model and assuming a granular soil under spudcans, properties such as soil nonlinear behaviour near the structure, contact phenomena at the interface of soil and spudcan (such as uplifting and rocking), and geometrical nonlinear behaviour of the structure are studied. Results of this study show that inelastic behaviour of the soil causes an increase in the lateral displacement at the hull elevation and permanent unequal settlement in soil below the spudcans, which are increased by decreasing the friction angle of the sandy soil. In fact, spudeans and the underlying soil cause a relative fixity at the platform support, which changes the dynamic response of the structure compared with the case where the structure is assumed to have a fixed support or pinned support. For simulating this behaviour without explicit modelling of soil-structure interaction (SSI), moment- rotation curves at the end of platform legs, which are dependent on foundation dimensions and soil characteristics, are obtained. These curves can be used in a simplified model of the platform for considering the relative fixity at the soil- foundation interface.