Wave reflection and refraction in layered media is a topic closely related to seismology,acoustics,geophysics and earthquake engineering.Analytical solutions for wave reflection and refraction coefficients in multi-la...Wave reflection and refraction in layered media is a topic closely related to seismology,acoustics,geophysics and earthquake engineering.Analytical solutions for wave reflection and refraction coefficients in multi-layered media subjected to P wave incidence from the elastic half-space are derived in terms of displacement potentials.The system is composed of ideal fluid,porous medium,and underlying elastic solid.By numerical examples,the effects of porous medium and the incident wave angle on the dynamic pressures of ideal fluid are analyzed.The results show that the existence of the porous medium,especially in the partially saturated case,may significantly affect the dynamic pressures of the overlying fluid.展开更多
A new approach to realize high-energy and high-power stimulated Brillouin scattering phase conjugation mirrors (SBS-PCMs) is described.The reflectivity of SBS-PCM is investigated under a 10-Hz repetition rate and a ...A new approach to realize high-energy and high-power stimulated Brillouin scattering phase conjugation mirrors (SBS-PCMs) is described.The reflectivity of SBS-PCM is investigated under a 10-Hz repetition rate and a high energy load.The relationship between reflectivity and input energy is examined experimentally with different PCM structures,focus lengths,and medium cell structures.A medium cell with a circulating structure is designed,and its advantage is demonstrated through an experimental comparison with traditional PCM structures.The 30-cm focus lens and 150-cm collimation lens are optimized when the input energy reaches 1010 mJ at 10-Hz repetition rate.Therefore,a reflectivity of 84.7% and a higher energy load using the circulating two-cell structure are achieved.展开更多
In this work,an enriched model describing the longitudinal wave propagation is established based on Mindlin’s Second Strain Gradient(SSG)theory,which can describe the heterogeneity caused by the micro-structure inter...In this work,an enriched model describing the longitudinal wave propagation is established based on Mindlin’s Second Strain Gradient(SSG)theory,which can describe the heterogeneity caused by the micro-structure interactions in the frame of continuum mechanics.The governing equation and associated boundary conditions are derived based on Hamilton’s principle,then the dispersion relation of non-classical longitudinal wave together with the extra-waves appearing exclusively in SSG theory model are investigated.The investigations are based on the modal density,energy flow,and forced response of the rod.Wave transmission and reflection through planar interfaces based on the proposed model have been calculated.Finally,the results of the enriched model are well interpreted by comparing with the classical theory results,and some useful conclusions are derived on the SSG theory based model in the wave propagation characterization.展开更多
基金National Natural Science Foundation of China Under Grant No.50309005National Key Basic Research and Development Program Under Grant No.2002CB412709
文摘Wave reflection and refraction in layered media is a topic closely related to seismology,acoustics,geophysics and earthquake engineering.Analytical solutions for wave reflection and refraction coefficients in multi-layered media subjected to P wave incidence from the elastic half-space are derived in terms of displacement potentials.The system is composed of ideal fluid,porous medium,and underlying elastic solid.By numerical examples,the effects of porous medium and the incident wave angle on the dynamic pressures of ideal fluid are analyzed.The results show that the existence of the porous medium,especially in the partially saturated case,may significantly affect the dynamic pressures of the overlying fluid.
基金supported by the National Natural Science Foundation of China(No. 60878005)the China Postdoctoral Science Foundation(No. 20090450966)+1 种基金the Heilongjiang Postdoctoral Science Foundationthe Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(No. HIT. NSRIF.2009010)
文摘A new approach to realize high-energy and high-power stimulated Brillouin scattering phase conjugation mirrors (SBS-PCMs) is described.The reflectivity of SBS-PCM is investigated under a 10-Hz repetition rate and a high energy load.The relationship between reflectivity and input energy is examined experimentally with different PCM structures,focus lengths,and medium cell structures.A medium cell with a circulating structure is designed,and its advantage is demonstrated through an experimental comparison with traditional PCM structures.The 30-cm focus lens and 150-cm collimation lens are optimized when the input energy reaches 1010 mJ at 10-Hz repetition rate.Therefore,a reflectivity of 84.7% and a higher energy load using the circulating two-cell structure are achieved.
基金supported by the LabEx CeLyA (Centre Lyonnais d’Acoustique, ANR-10-LABX-0060) of Universitéde Lyon。
文摘In this work,an enriched model describing the longitudinal wave propagation is established based on Mindlin’s Second Strain Gradient(SSG)theory,which can describe the heterogeneity caused by the micro-structure interactions in the frame of continuum mechanics.The governing equation and associated boundary conditions are derived based on Hamilton’s principle,then the dispersion relation of non-classical longitudinal wave together with the extra-waves appearing exclusively in SSG theory model are investigated.The investigations are based on the modal density,energy flow,and forced response of the rod.Wave transmission and reflection through planar interfaces based on the proposed model have been calculated.Finally,the results of the enriched model are well interpreted by comparing with the classical theory results,and some useful conclusions are derived on the SSG theory based model in the wave propagation characterization.