期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Strategic flight assignment approach based on multi-objective parallel evolution algorithm with dynamic migration interval 被引量:7
1
作者 Zhang Xuejun Guan Xiangmin +1 位作者 Zhu Yanbo Lei Jiaxing 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第2期556-563,共8页
The continuous growth of air traffic has led to acute airspace congestion and severe delays, which threatens operation safety and cause enormous economic loss. Flight assignment is an economical and effective strategi... The continuous growth of air traffic has led to acute airspace congestion and severe delays, which threatens operation safety and cause enormous economic loss. Flight assignment is an economical and effective strategic plan to reduce the flight delay and airspace congestion by rea- sonably regulating the air traffic flow of China. However, it is a large-scale combinatorial optimiza- tion problem which is difficult to solve. In order to improve the quality of solutions, an effective multi-objective parallel evolution algorithm (MPEA) framework with dynamic migration interval strategy is presented in this work. Firstly, multiple evolution populations are constructed to solve the problem simultaneously to enhance the optimization capability. Then a new strategy is pro- posed to dynamically change the migration interval among different evolution populations to improve the efficiency of the cooperation of populations. Finally, the cooperative co-evolution (CC) algorithm combined with non-dominated sorting genetic algorithm II (NSGA-II) is intro- duced for each population. Empirical studies using the real air traffic data of the Chinese air route network and daily flight plans show that our method outperforms the existing approaches, multi- objective genetic algorithm (MOGA), multi-objective evolutionary algorithm based on decom- position (MOEA/D), CC-based multi-objective algorithm (CCMA) as well as other two MPEAs with different migration interval strategies. 展开更多
关键词 Air traffic flow management cooperative co-evolution dynamic migration intervalstrategy Flight assignment Parallel evolution algorithm
原文传递
协同粒子群优化算法 被引量:7
2
作者 刘怀亮 苏瑞娟 +1 位作者 许若宁 高鹰 《计算机应用》 CSCD 北大核心 2009年第11期3068-3073,共6页
为解决粒子群优化算法易陷入局部最优的问题,提出了两种新方法协同处理粒子群优化算法:对比平均适应度值差的粒子,用动态Zaslavskii混沌映射公式改进粒子惯性权重与速度矢量,在复杂多变的环境中逐步摆脱局部最优值,动态寻找全局最优值;... 为解决粒子群优化算法易陷入局部最优的问题,提出了两种新方法协同处理粒子群优化算法:对比平均适应度值差的粒子,用动态Zaslavskii混沌映射公式改进粒子惯性权重与速度矢量,在复杂多变的环境中逐步摆脱局部最优值,动态寻找全局最优值;对好于或等于适应度平均值的粒子,用动态非线性函数调整粒子惯性权重与速度矢量,在保存相对有利环境的基础上逐步向全局最优处收敛。两种方法相辅相成、动态协调,使两个动态种群相互协作、协同进化。实验表明该算法在多个标准测试函数下都超越了同类著名改进算法。 展开更多
关键词 粒子群优化 速度矢量 动态Zaslavskii混沌映射公式 动态非线性函数 协同进化
下载PDF
演化信息协助的动态协同随机漂移粒子群优化算法 被引量:1
3
作者 赵吉 程成 《计算机应用》 CSCD 北大核心 2020年第11期3119-3126,共8页
为了改善随机漂移粒子群算法的群体多样性,通过演化信息的协助,提出动态协同随机漂移粒子群优化(CRDPSO)算法。利用上下文粒子的向量信息,粒子之间的动态协作增加了种群多样性,这有助于提高群体的搜索能力,并使整个群体协同搜索全局最... 为了改善随机漂移粒子群算法的群体多样性,通过演化信息的协助,提出动态协同随机漂移粒子群优化(CRDPSO)算法。利用上下文粒子的向量信息,粒子之间的动态协作增加了种群多样性,这有助于提高群体的搜索能力,并使整个群体协同搜索全局最优值。同时在演化过程中的每次迭代,利用二维空间分割树结构来存储算法中的估计解的位置和适应度值,从而实现快速适应度函数逼近。由于适应度函数逼近增强了变异策略,因此变异是自适应且无参数的。通过典型测试函数将CRDPSO算法和差分进化算法(DE)、协方差矩阵适应进化策略算法(CMA-ES)、非重复访问遗传算法(cNrGA)以及三种改进的量子行为粒子群算法(QPSO)进行比较。实验结果表明,不管是对于单峰还是多峰测试函数,CRDPSO的性能均是最优的,证明了该算法的有效性。 展开更多
关键词 群体智能 动态协同进化 演化信息 自适应无参变异 二维空间分割
下载PDF
基于动态收益矩阵的成长网络合作演化仿真研究 被引量:1
4
作者 辛琦 周晓 《系统仿真学报》 CAS CSCD 北大核心 2017年第2期319-325,共7页
构建了一个基于动态收益矩阵的成长网络合作演化模型,考虑了个体及连边数量不断增加的网络结构演化和收益矩阵受环境影响不断改变的个体策略演化。该模型运用反馈机制使收益矩阵随网络环境发生改变,并结合反馈强度、初始背叛诱惑、节点... 构建了一个基于动态收益矩阵的成长网络合作演化模型,考虑了个体及连边数量不断增加的网络结构演化和收益矩阵受环境影响不断改变的个体策略演化。该模型运用反馈机制使收益矩阵随网络环境发生改变,并结合反馈强度、初始背叛诱惑、节点平均度等参数对反馈机制在网络合作演化中的作用进行分析。数值仿真结果表明,根据文中所构建之模型成长起来的网络具有幂律分布特征;反馈机制的引入,有助于网络合作的演化,并且,反馈强度越大、初始背叛诱惑越大、节点平均度越大时,反馈机制的作用越明显。 展开更多
关键词 反馈机制 动态收益 网络成长 合作演化
下载PDF
基于多种群多模型协同进化的粒子群优化算法 被引量:6
5
作者 徐冰纯 葛洪伟 王燕燕 《计算机工程》 CAS CSCD 2013年第5期200-203,208,共5页
为克服标准粒子群优化(PSO)算法易陷入局部极值和优化精度较低的缺点,提出一种多种群多模型协同进化的粒子群优化(MSM-PSO)算法。将整个粒子群分成大小相等的3个分群,各分群采用不同的进化模型,分群间相互影响促进。同时采用自适应动态... 为克服标准粒子群优化(PSO)算法易陷入局部极值和优化精度较低的缺点,提出一种多种群多模型协同进化的粒子群优化(MSM-PSO)算法。将整个粒子群分成大小相等的3个分群,各分群采用不同的进化模型,分群间相互影响促进。同时采用自适应动态惯性权重,以保持种群多样性,降低陷入局部极值的概率。测试结果表明,该算法全局性能好、寻优精度高。 展开更多
关键词 粒子群优化算法 多种群 多模型 自适应动态惯性权重 协同进化
下载PDF
Dynamic aggregation evolution of competitive societies of cooperative and noncooperative agents
6
作者 林振权 叶高翔 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期572-586,共15页
We propose an evolution model of cooperative agent and noncooperative agent aggregates to investigate the dynamic evolution behaviors of the system and the effects of the competing microscopic reactions on the dynamic... We propose an evolution model of cooperative agent and noncooperative agent aggregates to investigate the dynamic evolution behaviors of the system and the effects of the competing microscopic reactions on the dynamic evolution. In this model, each cooperative agent and noncooperative agent are endowed with integer values of cooperative spirits and nonco- operative spirits, respectively. The cooperative spirits of a cooperative agent aggregate and the noncooperative spirits of a noncooperative agent aggregate change via four competing microscopic reaction schemes: the win-win reaction between two cooperative agents, the lose-lose reaction between two noncooperative agents, the win-lose reaction between a coop- erative agent and a noncooperative agent (equivalent to the migration of spirits from cooperative agents to noncooperative agents), and the cooperative agent catalyzed decline of noncooperative spirits. Based on the generalized Smoluchowski's rate equation approach, we investigate the dynamic evolution behaviors such as the total cooperative spirits of all coop- erative agents and the total noncooperative spirits of all noncooperative agents. The effects of the three main groups of competition on the dynamic evolution are revealed. These include: (i) the competition between the lose-lose reaction and the win-lose reaction, which gives rise to respectively the decrease and increase in the noncooperative agent spirits; (ii) the competition between the win-win reaction and the win-lose reaction, which gives rise to respectively the increase and decrease in the cooperative agent spirits; (iii) the competition between the win-lose reaction and the catalyzed-decline reaction, which gives rise to respectively the increase and decrease in the noncooperative agent spirits. 展开更多
关键词 dynamic evolution in competitive societies cooperative and noncooperative agents win-win andlose-lose reaction win-lose reaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部