In view of complex geological characteristics and alternating loading conditions associated with cyclic large amount of gas injection and withdrawal in underground gas storage(UGS) of China, a series of key gas storag...In view of complex geological characteristics and alternating loading conditions associated with cyclic large amount of gas injection and withdrawal in underground gas storage(UGS) of China, a series of key gas storage construction technologies were established, mainly including UGS site selection and evaluation, key index design, well drilling and completion, surface engineering and operational risk warning and assessment, etc. The effect of field application was discussed and summarized. Firstly, trap dynamic sealing capacity evaluation technology for conversion of UGS from the fault depleted or partially depleted gas reservoirs. A key index design method mainly based on the effective gas storage capacity design for water flooded heterogeneous gas reservoirs was proposed. To effectively guide the engineering construction of UGS, the safe well drilling, high quality cementing and high pressure and large flow surface injection and production engineering optimization suitable for long-term alternate loading condition and ultra-deep and ultra-low temperature formation were developed. The core surface equipment like high pressure gas injection compressor can be manufactured by our own. Last, the full-system operational risk warning and assessment technology for UGS was set up. The above 5 key technologies have been utilized in site selection, development scheme design, engineering construction and annual operations of 6 UGS groups, e.g. the Hutubi UGS in Xinjiang. To date, designed main indexes are highly consistent with actural performance, the 6 UGS groups have the load capacity of over 7.5 billion cubic meters of working gas volume and all the storage facilities have been running efficiently and safely.展开更多
Gas dynamic control in welding with consumable electrode in conditions of two-jet gas shielding and its impact on the processes in the welding area and properties of the welded joints from high strength alloyed steel ...Gas dynamic control in welding with consumable electrode in conditions of two-jet gas shielding and its impact on the processes in the welding area and properties of the welded joints from high strength alloyed steel 30HGSA is considered in the paper. The results of a comparative experimental study of controlling the properties of welded joints by changing the gas dynamics of the active shielding gas are given. The impact force of a shielding gas jet on the drop of the electrode metal is 12 times higher in conditions of two-jet gas shielding than in those of single jet shielding. It is found that gas dynamics of the active shielding gas jet determines the formation of the welded joints, their chemical properties and the properties of the welded joints from high strength alloyed steels. The consumable electrode welding method with two-jet gas shielding provides controlled dynamics in the welding area and allows controlling the transfer of the electrode metal, chemical composition of the weld, stabilizing the welding process, it ensures higher mechanical properties of the welded joints.展开更多
The first imported off-gas analysis system on 150 t BOF at Benxi Plates Co.Ltd. is presented and the continuous determination of bath carbon content has been studied. Thecomparison between the whole-course carbon inte...The first imported off-gas analysis system on 150 t BOF at Benxi Plates Co.Ltd. is presented and the continuous determination of bath carbon content has been studied. Thecomparison between the whole-course carbon integral model and the end-point carbon prediction modelhas been made. The results show that the regular change of CO, CO_2 and N_2 content in the off-gasduring blowing plays an important role in judging the smelting end-point of converter; the cubiccurve fitting model has a higher hit rate over 95 percent for the heats whose end-point carboncontent is lower than 0.10 percent with a precision of +-0.02 percent and has a large error for theheats whose end-point carbon content is more than 0.15 percent.展开更多
A dynamic velocity feed-forward compensation (RBF-NN) dynamic model identification was presented for control (DVFCC) approach with RBF neural network the adaptive trajectory tracking of industrial robots. The prop...A dynamic velocity feed-forward compensation (RBF-NN) dynamic model identification was presented for control (DVFCC) approach with RBF neural network the adaptive trajectory tracking of industrial robots. The proposed control approach combined the advantages of traditional feedback closed-loop position control and computed torque control based on inverse dynamic model. The feed-forward compensator used a nominal robot dynamics as accurate dynamic model and on-line identification with RBF-NN as uncertain part to improve dynamic modeling accu- racy. The proposed compensation was applied as velocity feed-forward by an inverse velocity controller that can con- vert torque signal into velocity in the standard industrial controller. Then, the need for a torque control interface was avoided in the real-time dynamic control of industrial robot. The simulations and experiments were carried out on a gas cutting manipulator. The results show that the proposed control approach can reduce steady-state error, suppress overshoot and enhance tracking accuracy and efficiency in joint space and Cartesian space, especially under high- speed condition.展开更多
基金Supported by the CNPC Science and Technology Major Project(2015E-4002)
文摘In view of complex geological characteristics and alternating loading conditions associated with cyclic large amount of gas injection and withdrawal in underground gas storage(UGS) of China, a series of key gas storage construction technologies were established, mainly including UGS site selection and evaluation, key index design, well drilling and completion, surface engineering and operational risk warning and assessment, etc. The effect of field application was discussed and summarized. Firstly, trap dynamic sealing capacity evaluation technology for conversion of UGS from the fault depleted or partially depleted gas reservoirs. A key index design method mainly based on the effective gas storage capacity design for water flooded heterogeneous gas reservoirs was proposed. To effectively guide the engineering construction of UGS, the safe well drilling, high quality cementing and high pressure and large flow surface injection and production engineering optimization suitable for long-term alternate loading condition and ultra-deep and ultra-low temperature formation were developed. The core surface equipment like high pressure gas injection compressor can be manufactured by our own. Last, the full-system operational risk warning and assessment technology for UGS was set up. The above 5 key technologies have been utilized in site selection, development scheme design, engineering construction and annual operations of 6 UGS groups, e.g. the Hutubi UGS in Xinjiang. To date, designed main indexes are highly consistent with actural performance, the 6 UGS groups have the load capacity of over 7.5 billion cubic meters of working gas volume and all the storage facilities have been running efficiently and safely.
文摘Gas dynamic control in welding with consumable electrode in conditions of two-jet gas shielding and its impact on the processes in the welding area and properties of the welded joints from high strength alloyed steel 30HGSA is considered in the paper. The results of a comparative experimental study of controlling the properties of welded joints by changing the gas dynamics of the active shielding gas are given. The impact force of a shielding gas jet on the drop of the electrode metal is 12 times higher in conditions of two-jet gas shielding than in those of single jet shielding. It is found that gas dynamics of the active shielding gas jet determines the formation of the welded joints, their chemical properties and the properties of the welded joints from high strength alloyed steels. The consumable electrode welding method with two-jet gas shielding provides controlled dynamics in the welding area and allows controlling the transfer of the electrode metal, chemical composition of the weld, stabilizing the welding process, it ensures higher mechanical properties of the welded joints.
文摘The first imported off-gas analysis system on 150 t BOF at Benxi Plates Co.Ltd. is presented and the continuous determination of bath carbon content has been studied. Thecomparison between the whole-course carbon integral model and the end-point carbon prediction modelhas been made. The results show that the regular change of CO, CO_2 and N_2 content in the off-gasduring blowing plays an important role in judging the smelting end-point of converter; the cubiccurve fitting model has a higher hit rate over 95 percent for the heats whose end-point carboncontent is lower than 0.10 percent with a precision of +-0.02 percent and has a large error for theheats whose end-point carbon content is more than 0.15 percent.
文摘A dynamic velocity feed-forward compensation (RBF-NN) dynamic model identification was presented for control (DVFCC) approach with RBF neural network the adaptive trajectory tracking of industrial robots. The proposed control approach combined the advantages of traditional feedback closed-loop position control and computed torque control based on inverse dynamic model. The feed-forward compensator used a nominal robot dynamics as accurate dynamic model and on-line identification with RBF-NN as uncertain part to improve dynamic modeling accu- racy. The proposed compensation was applied as velocity feed-forward by an inverse velocity controller that can con- vert torque signal into velocity in the standard industrial controller. Then, the need for a torque control interface was avoided in the real-time dynamic control of industrial robot. The simulations and experiments were carried out on a gas cutting manipulator. The results show that the proposed control approach can reduce steady-state error, suppress overshoot and enhance tracking accuracy and efficiency in joint space and Cartesian space, especially under high- speed condition.