The laminar boundary layer behind a constant-speed shock wave moving through a dusty gas along a solid surface is studied.The Saffman lift force acting on a spherical particle in a gas boundary layer is taken into acc...The laminar boundary layer behind a constant-speed shock wave moving through a dusty gas along a solid surface is studied.The Saffman lift force acting on a spherical particle in a gas boundary layer is taken into account.A method for calculating the density profile of dispersed phase near the wall is pro- posed and some numerical results are given.It is shown that behind the shock wave,there exists a curved thin layer where the density of particles is many times higher than the original one.This dust collection effect may be of essential importance to the problem of dust explosion in industry.展开更多
The interaction of a planar shock wave with a dusty-gas cylinder is numerically studied by a compressible multi-component solver with an adaptive mesh refinement technique. The influence of non-equilibrium effect caus...The interaction of a planar shock wave with a dusty-gas cylinder is numerically studied by a compressible multi-component solver with an adaptive mesh refinement technique. The influence of non-equilibrium effect caused by the particle relaxation, which is closely related to the particle radius and shock strength, on the evolution of particle cylinder is emphasized. For a very small particle radius, the particle cloud behaves like an equilibrium gas cylinder with the same physical properties as those of the gas-particle mixture. Specifically, the transmitted shock converges continually within the cylinder and then focuses at a region near the downstream interface, producing a local high pressure zone followed by a particle jet. Also, noticeable secondary instabilities emerge along the cylinder edge and the evident particle roll-up causes relatively large width and height of the shocked cylinder. As the particle radius increases, the flow features approach those of a frozen flow of pure air, e.g., the transmitted shock propagates more quickly with a weaker strength and a smaller curvature, resulting in an increasingly-weaken shock focusing and particle jet. Also, particles would escape from the vortex core formed at late stages due to the larger inertia, inducing a greater particle dispersion. It is found that a large particle radius as well as a strong incident shock can facilitate such particle escape. The theory of Luo et al.(J. Fluid Mech., 2007) combined with the SZ circulation model ( J. Fluid Mech., 1994) can reasonably explain the high dependence of particle escape on the particle radius and shock strength.展开更多
In the framework of the two-fluid model, a hypersonic flow of a nonuniform dusty gas with low inertial (non-depositing) particles around a blunt body is considered. The particle mass concentration is assumed to be sma...In the framework of the two-fluid model, a hypersonic flow of a nonuniform dusty gas with low inertial (non-depositing) particles around a blunt body is considered. The particle mass concentration is assumed to be small, so that the effect of particles on the carrier phase is significant only inside the boundary layer where the particles accumulate. Stepshaped and harmonic nonuniformities of the particle concentration ahead of the bow shock wave are considered and the corresponding nonstationary distributions of the particle concentration in the shock layer are studied. On the basis of numerical study of nonstationary two-phase boundary layer equations derived by the matched asymptotic expansion method, the effects of free-stream particle concentration nonuniformities on the thermal flux, and the friction coefficient in the neighborhood of stagnation point are investigated, in particular, the most “dangerous” nonuniformity periods are found.展开更多
The present paper describes a numerical two-way coupling model for shock-induced laminar boundary-layer flows of a dust-laden gas and studies the transverse migration of fine particles under the action of Saffman lift...The present paper describes a numerical two-way coupling model for shock-induced laminar boundary-layer flows of a dust-laden gas and studies the transverse migration of fine particles under the action of Saffman lift force. The governing equations are formulated in the dilute twophase continuum framework with consideration of the finiteness of the particle Reynolds and Knudsen numbers. The full Lagrangian method is explored for calculating the dispersedphase flow fields (including the number density of particles) in the regions of intersecting particle trajectories. The computation results show a significant reaction of the particles on the two-phase boundary-layer structure when the mass loading ratio of particles takes finite values.展开更多
By using Lagrangian method, the flow properties of a dusty-gas point source in a supersonic free stream were studied and the particle parameters in the near-symmetry-axis region were obtained . It is demonstrated that...By using Lagrangian method, the flow properties of a dusty-gas point source in a supersonic free stream were studied and the particle parameters in the near-symmetry-axis region were obtained . It is demonstrated that fairly inertial particles travel along oscillating and intersecting trajectories between the bow and termination shock waves . In this region, formation of ' mufti- layer structure' in panicle distribution with alternating low- and high density layers is revealed. Moreover, sharp accumulation of particles occurs near the envelopes of particle trajectories .展开更多
When a dusty shock wave propagates along a flat plate, laminar boundary-layer flows are formed over the solid wall. The induced boundary layer problem is numerically investigated in the present paper. Using a two-cont...When a dusty shock wave propagates along a flat plate, laminar boundary-layer flows are formed over the solid wall. The induced boundary layer problem is numerically investigated in the present paper. Using a two-continuum medium and twoway coupling model, the governing equations for this two-phase flow system are given and then solved by the finite difference method. The calculation results indicate that the post-shock flow field is characterized by relaxation phenomenon. The effects of the relaxation structure Of the dusty shock wave on the boundary layer are discussed in detail.展开更多
文摘The laminar boundary layer behind a constant-speed shock wave moving through a dusty gas along a solid surface is studied.The Saffman lift force acting on a spherical particle in a gas boundary layer is taken into account.A method for calculating the density profile of dispersed phase near the wall is pro- posed and some numerical results are given.It is shown that behind the shock wave,there exists a curved thin layer where the density of particles is many times higher than the original one.This dust collection effect may be of essential importance to the problem of dust explosion in industry.
基金This work was supported by the National Natural Science Foundation of China (Grants 11802304 and 11625211)the Science Challenging Project (Grant TZ2016001).
文摘The interaction of a planar shock wave with a dusty-gas cylinder is numerically studied by a compressible multi-component solver with an adaptive mesh refinement technique. The influence of non-equilibrium effect caused by the particle relaxation, which is closely related to the particle radius and shock strength, on the evolution of particle cylinder is emphasized. For a very small particle radius, the particle cloud behaves like an equilibrium gas cylinder with the same physical properties as those of the gas-particle mixture. Specifically, the transmitted shock converges continually within the cylinder and then focuses at a region near the downstream interface, producing a local high pressure zone followed by a particle jet. Also, noticeable secondary instabilities emerge along the cylinder edge and the evident particle roll-up causes relatively large width and height of the shocked cylinder. As the particle radius increases, the flow features approach those of a frozen flow of pure air, e.g., the transmitted shock propagates more quickly with a weaker strength and a smaller curvature, resulting in an increasingly-weaken shock focusing and particle jet. Also, particles would escape from the vortex core formed at late stages due to the larger inertia, inducing a greater particle dispersion. It is found that a large particle radius as well as a strong incident shock can facilitate such particle escape. The theory of Luo et al.(J. Fluid Mech., 2007) combined with the SZ circulation model ( J. Fluid Mech., 1994) can reasonably explain the high dependence of particle escape on the particle radius and shock strength.
基金The project supported by the Russian Foundation for Basic Research(project No.96-01-00313)the National Natural Science Foundation of China(joint RFBR-NSFC grant No.96-01-00017c)
文摘In the framework of the two-fluid model, a hypersonic flow of a nonuniform dusty gas with low inertial (non-depositing) particles around a blunt body is considered. The particle mass concentration is assumed to be small, so that the effect of particles on the carrier phase is significant only inside the boundary layer where the particles accumulate. Stepshaped and harmonic nonuniformities of the particle concentration ahead of the bow shock wave are considered and the corresponding nonstationary distributions of the particle concentration in the shock layer are studied. On the basis of numerical study of nonstationary two-phase boundary layer equations derived by the matched asymptotic expansion method, the effects of free-stream particle concentration nonuniformities on the thermal flux, and the friction coefficient in the neighborhood of stagnation point are investigated, in particular, the most “dangerous” nonuniformity periods are found.
基金The project supported by the National Natural Science Foundation of China(90205024)Russian Foundation for Basic Research(RFBR and(RFBR-NSFC-39004)
文摘The present paper describes a numerical two-way coupling model for shock-induced laminar boundary-layer flows of a dust-laden gas and studies the transverse migration of fine particles under the action of Saffman lift force. The governing equations are formulated in the dilute twophase continuum framework with consideration of the finiteness of the particle Reynolds and Knudsen numbers. The full Lagrangian method is explored for calculating the dispersedphase flow fields (including the number density of particles) in the regions of intersecting particle trajectories. The computation results show a significant reaction of the particles on the two-phase boundary-layer structure when the mass loading ratio of particles takes finite values.
基金Foundation items : the National Natural Science Foundation of China ( NSFC grant No.90205024) the Russian Foundation for Basic Research (RFBR grant No. 02-01-00770) RFBR-NSFC grant No.99-01-39020)
文摘By using Lagrangian method, the flow properties of a dusty-gas point source in a supersonic free stream were studied and the particle parameters in the near-symmetry-axis region were obtained . It is demonstrated that fairly inertial particles travel along oscillating and intersecting trajectories between the bow and termination shock waves . In this region, formation of ' mufti- layer structure' in panicle distribution with alternating low- and high density layers is revealed. Moreover, sharp accumulation of particles occurs near the envelopes of particle trajectories .
文摘When a dusty shock wave propagates along a flat plate, laminar boundary-layer flows are formed over the solid wall. The induced boundary layer problem is numerically investigated in the present paper. Using a two-continuum medium and twoway coupling model, the governing equations for this two-phase flow system are given and then solved by the finite difference method. The calculation results indicate that the post-shock flow field is characterized by relaxation phenomenon. The effects of the relaxation structure Of the dusty shock wave on the boundary layer are discussed in detail.