With the rapid development of the automobile industry in China, there is an ever-increasing demand for long-life cold working dies used for punching automobile components. However, the full potential of such advanced ...With the rapid development of the automobile industry in China, there is an ever-increasing demand for long-life cold working dies used for punching automobile components. However, the full potential of such advanced surface engineering technologies as PVD coatings and duplex surface treatments in cold work dies has not been realized. In the present study, Crl2MoV steel has been surface engineered by single PVD Ti/TiN coating and duplex treatment combining low temperature plasma nitriding (LTPN) with PVD Ti/TiN coatings. The properties of Ti/TiN coatings in terms of surface morphology, microhardness, load bearing capacity, bonding strength and wear resistance were evaluated by microhardness, scratch and wear tests. The experimental results show that PVD Ti/TiN coatings can significantly enhance the surface load bearing capacity (especially for duplex treatments) and wear resistance of Crl2MoV steel by more than one order of magnitude. This can be mainly attributed to the hard and well-adherent PVD Ti/TiN surface coatings and strong mechanical support of the LTPN sublayer. While two-body abrasive wear prevails for uncoated Crl2MoV, the micropolishing action of the counterface dominates in surface engineered material.展开更多
Titanium and its alloys are widely used as materials for bio-medical applications, such as implants. However, ions of the alloy can release to the body region and spread into the blood circulation. In this study, plas...Titanium and its alloys are widely used as materials for bio-medical applications, such as implants. However, ions of the alloy can release to the body region and spread into the blood circulation. In this study, plasma nitriding and CrN coating techniques are used in order to overcome the problem of ion release. The objective of this study was to investigate the effects of plasma nitrided pure titanium on the structural properties and corrosion behaviors before and after CrN coating in Ringer's solution at 37℃. The structural properties were investigated using Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). A diffusion layer and a compound layer composed of δ-TiN and ε-Ti2N phases were observed on the surface of nitrided pure titanium. Corrosion tests were made for the determination of electrochemical properties with the help of Potentio- stat/Galvanostat device. The results show that corrosion behaviors of untreated and treated samples have similar characteristic.展开更多
Surface nanocrystallization(SNC)can markedly improve surface mechanical properties of metallic materials and accelerate thermal diffusion of elemental atoms.In this work we study the effects of SNC on structure and me...Surface nanocrystallization(SNC)can markedly improve surface mechanical properties of metallic materials and accelerate thermal diffusion of elemental atoms.In this work we study the effects of SNC on structure and mechanical properties of TiN coating on 304 stainless steel substrate.The steel was subjected to 15 min surface mechanical attrition treatment(SMAT)to obtain a nanocrystalline surface layer with thickness about 30μm.TiN coating was deposited on the surface nanocrystallized and the coarse-grained steel substrates by multi-arc ion plating.X-ray diffraction shows that TiN(111)orientation of the coating is much reduced due to SNC treatment.Mechanical tests show that the nanocrystalline surface layer has obviously increased surface hardness of the coating system;toughness and adhesion of the coating,impact resistance of the coating system are also improved.Advantages of SNC-hard coating processing over the conventional duplex treatment consisting of thermal diffusion process-hard coating are shortly discussed.展开更多
文摘With the rapid development of the automobile industry in China, there is an ever-increasing demand for long-life cold working dies used for punching automobile components. However, the full potential of such advanced surface engineering technologies as PVD coatings and duplex surface treatments in cold work dies has not been realized. In the present study, Crl2MoV steel has been surface engineered by single PVD Ti/TiN coating and duplex treatment combining low temperature plasma nitriding (LTPN) with PVD Ti/TiN coatings. The properties of Ti/TiN coatings in terms of surface morphology, microhardness, load bearing capacity, bonding strength and wear resistance were evaluated by microhardness, scratch and wear tests. The experimental results show that PVD Ti/TiN coatings can significantly enhance the surface load bearing capacity (especially for duplex treatments) and wear resistance of Crl2MoV steel by more than one order of magnitude. This can be mainly attributed to the hard and well-adherent PVD Ti/TiN surface coatings and strong mechanical support of the LTPN sublayer. While two-body abrasive wear prevails for uncoated Crl2MoV, the micropolishing action of the counterface dominates in surface engineered material.
文摘Titanium and its alloys are widely used as materials for bio-medical applications, such as implants. However, ions of the alloy can release to the body region and spread into the blood circulation. In this study, plasma nitriding and CrN coating techniques are used in order to overcome the problem of ion release. The objective of this study was to investigate the effects of plasma nitrided pure titanium on the structural properties and corrosion behaviors before and after CrN coating in Ringer's solution at 37℃. The structural properties were investigated using Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). A diffusion layer and a compound layer composed of δ-TiN and ε-Ti2N phases were observed on the surface of nitrided pure titanium. Corrosion tests were made for the determination of electrochemical properties with the help of Potentio- stat/Galvanostat device. The results show that corrosion behaviors of untreated and treated samples have similar characteristic.
基金Natur Science Fund of China(50901058)the Science and Technology Program of Shaanxi Province(2007K06-08)the Open Project Program of State Key Laboratory of Metastable Materials Science and Technology,China(KF201107)
文摘Surface nanocrystallization(SNC)can markedly improve surface mechanical properties of metallic materials and accelerate thermal diffusion of elemental atoms.In this work we study the effects of SNC on structure and mechanical properties of TiN coating on 304 stainless steel substrate.The steel was subjected to 15 min surface mechanical attrition treatment(SMAT)to obtain a nanocrystalline surface layer with thickness about 30μm.TiN coating was deposited on the surface nanocrystallized and the coarse-grained steel substrates by multi-arc ion plating.X-ray diffraction shows that TiN(111)orientation of the coating is much reduced due to SNC treatment.Mechanical tests show that the nanocrystalline surface layer has obviously increased surface hardness of the coating system;toughness and adhesion of the coating,impact resistance of the coating system are also improved.Advantages of SNC-hard coating processing over the conventional duplex treatment consisting of thermal diffusion process-hard coating are shortly discussed.