Recent extensive and important studies have provided detailed information and compelling evidence on how the presence of waves influences the vertical diffusivity/dispersivity in the coastal environment, which can aff...Recent extensive and important studies have provided detailed information and compelling evidence on how the presence of waves influences the vertical diffusivity/dispersivity in the coastal environment, which can affect various water quality considerations such as the distribution of suspended sediments in the water column as well as the potential of eutrophication. Comparatively, how the presence of waves influences the horizontal diffusivity/dispersivity has received only scant attention in the literature. Our previous works investigated the role played by the Taylor mechanism due to the wave-induced drift profile which leads to the longitudinal dispersion of contaminants in the horizontal direction, under regular sinusoidal waves and random waves with single-peak spectra. Natural waves in the coastal environment, however, often possess dual-peak spectra, comprising both higher frequency wind waves and lower frequency swells. In this study, the Taylor dispersion of contaminants under random waves with dual-peak spectra is examined through analytical derivation and numerical calculations. The effects of various dual-peak spectral parameters on the horizontal dispersion, including the proportion of lower frequency energy, peak frequency ratio and spectral shape parameter, are investigated. The results show that the relative energy distribution between the dual peaks has the most significant effect. Compared with single-peak spectra with equivalent energy, the Taylor dispersion with dual-peak spectra is stronger when the lower frequency is close to the peak frequency of the single-peak spectrum, and weaker with the higher frequency instead. Thus, it can be concluded that with a dual-peak wave spectrum, wind-dominated seas with higher frequency lead to stronger dispersion in the horizontal direction than swell-dominated seas with lower frequency.展开更多
A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing ...A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing in a high-refractive-index chalcogenide fiber is achieved with a coated thinly clad film. The dual-peak resonant characteristics near the PMTP and the refractive index sensing properties of the LPFG are analyzed first by the phase-matching condition of the LPFG. The effects of film parameters and cladding radius on the sensitivity of refractive index sensing are further discussed. The sensor is optimized by selecting the appropriate film parameters and cladding radius. Simulation results show that the ambient refractive index sensitivity of a dual-peak coated thinly clad chalcogenide LPFG at the PMTP can be 2400 nm/RIU, which is significantly higher than that of non-optimized gratings. It has great application potential in the field of chemical sensing and biosensors.展开更多
According to the standard of IMF(2001),I measured the size from 2003 to 2012 and the structure in 2012 of China’s full-covered fiscal expenditure.Furthermore,I compared the size of China’s fiscal expenditure with OE...According to the standard of IMF(2001),I measured the size from 2003 to 2012 and the structure in 2012 of China’s full-covered fiscal expenditure.Furthermore,I compared the size of China’s fiscal expenditure with OECD countries.I find that as China is going through the“dual-peak”period:the peak of infrastructure development and social welfare expansion,the overall financial expenditure share of GDP has risen from around 31%in 2003,to around 37%in 2012.The ratio of infrastructure expenditure to whole fiscal expenditure is about 39%,while spending on social welfare is only about 41%.展开更多
基金financially supported by the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering Research Foundation(Grant No.2015491311)the Fundamental Research Funds for the Central Universities(Grant No.DUT19LAB13)partially supported by the Ministry of Education,Singapore(Ac RF Tier 2 Grant No.MOE2013-T2-1-054)
文摘Recent extensive and important studies have provided detailed information and compelling evidence on how the presence of waves influences the vertical diffusivity/dispersivity in the coastal environment, which can affect various water quality considerations such as the distribution of suspended sediments in the water column as well as the potential of eutrophication. Comparatively, how the presence of waves influences the horizontal diffusivity/dispersivity has received only scant attention in the literature. Our previous works investigated the role played by the Taylor mechanism due to the wave-induced drift profile which leads to the longitudinal dispersion of contaminants in the horizontal direction, under regular sinusoidal waves and random waves with single-peak spectra. Natural waves in the coastal environment, however, often possess dual-peak spectra, comprising both higher frequency wind waves and lower frequency swells. In this study, the Taylor dispersion of contaminants under random waves with dual-peak spectra is examined through analytical derivation and numerical calculations. The effects of various dual-peak spectral parameters on the horizontal dispersion, including the proportion of lower frequency energy, peak frequency ratio and spectral shape parameter, are investigated. The results show that the relative energy distribution between the dual peaks has the most significant effect. Compared with single-peak spectra with equivalent energy, the Taylor dispersion with dual-peak spectra is stronger when the lower frequency is close to the peak frequency of the single-peak spectrum, and weaker with the higher frequency instead. Thus, it can be concluded that with a dual-peak wave spectrum, wind-dominated seas with higher frequency lead to stronger dispersion in the horizontal direction than swell-dominated seas with lower frequency.
基金Project supported by the Natural Science Foundation of China (Grant Nos.62075107,61935006,62090064,and62090065)K.C.Wong Magna Fund in Ningbo University。
文摘A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing in a high-refractive-index chalcogenide fiber is achieved with a coated thinly clad film. The dual-peak resonant characteristics near the PMTP and the refractive index sensing properties of the LPFG are analyzed first by the phase-matching condition of the LPFG. The effects of film parameters and cladding radius on the sensitivity of refractive index sensing are further discussed. The sensor is optimized by selecting the appropriate film parameters and cladding radius. Simulation results show that the ambient refractive index sensitivity of a dual-peak coated thinly clad chalcogenide LPFG at the PMTP can be 2400 nm/RIU, which is significantly higher than that of non-optimized gratings. It has great application potential in the field of chemical sensing and biosensors.
文摘According to the standard of IMF(2001),I measured the size from 2003 to 2012 and the structure in 2012 of China’s full-covered fiscal expenditure.Furthermore,I compared the size of China’s fiscal expenditure with OECD countries.I find that as China is going through the“dual-peak”period:the peak of infrastructure development and social welfare expansion,the overall financial expenditure share of GDP has risen from around 31%in 2003,to around 37%in 2012.The ratio of infrastructure expenditure to whole fiscal expenditure is about 39%,while spending on social welfare is only about 41%.