Precise and sensitive bioanalysis has been the major and urgent pursuit in pathologic diagnosis,food safety,environment monitoring,and drug evaluation.Photoelectrochemical(PEC)bioanalysis,as one of the most promising ...Precise and sensitive bioanalysis has been the major and urgent pursuit in pathologic diagnosis,food safety,environment monitoring,and drug evaluation.Photoelectrochemical(PEC)bioanalysis,as one of the most promising detection technologies,has rapidly expanded within the field of analysis.However,most of reported PEC analysis approaches still suffer from weak external anti-interference ability,high background,and the risk of false positive or negative errors due to their inherent single-signal readout.To overcome these shortcomings,new PEC-coupled dual-modal analysis approaches have been developed,where a dual-response signal can be derived through two completely different mechanisms and independent signal transduction pathways.This review introduces the basic principles of PEC biosensing and enumerates and classifies the substrate or probe selections,constructions,and applications of PEC-coupled dual-modal biosensors.Furthermore,the challenges and developmental prospects of PEC-coupled dual-mode sensing technologies are evaluated and discussed.We hope that this review will provide valuable insights into the latest advancements and practical applications of dual-mode PEC bioanalysis,which will be of great interest to those seeking to stay informed in this field.展开更多
A 50 MHz 1.8/0.9 V dual-mode buck DC-DC converter is proposed in this paper. A dual-mode control for high-frequency DC-DC converter is presented to enhance the conversion efficiency of light-load in this paper. A nove...A 50 MHz 1.8/0.9 V dual-mode buck DC-DC converter is proposed in this paper. A dual-mode control for high-frequency DC-DC converter is presented to enhance the conversion efficiency of light-load in this paper. A novel zero-crossing detector is proposed to shut down synchronous rectification transistor NMOS when the inductor crosses zero, which can decrease the power loss caused by reverse current and the trip point is adjusted by regulating IBIAS (BIAS current). A new logic control for pulse-skipping modulation loop is also presented in this paper, which has advantages of simple structure and low power loss. The proposed converter is realized in SMIC 0.18μm 1-poly 6-metal mixed signal CMOS process. With switching loss, conduction loss and reverse current related loss optimized, an efficiency of 57% is maintained at 10 mA, and a peak efficiency of 71% is measured at nominal operating conditions with a voltage conversion of 1.8 to 0.9 V.展开更多
基金the National Natural Science Foundation of China(Nos.52303153 and 51873145)the Basic science(Natural science)research project in universities of Jiangsu Province(No.23KJB150035)+2 种基金the Excellent Youth Foundation of Jiangsu Scientific Committee(No.BK20170065)the Qing Lan Project,the 5th 333 High-level Talents Training Project of Jiangsu Province(No.BRA2018340)the Six Talent Peaks Project in Jiangsu Province(No.XCL-79).
文摘Precise and sensitive bioanalysis has been the major and urgent pursuit in pathologic diagnosis,food safety,environment monitoring,and drug evaluation.Photoelectrochemical(PEC)bioanalysis,as one of the most promising detection technologies,has rapidly expanded within the field of analysis.However,most of reported PEC analysis approaches still suffer from weak external anti-interference ability,high background,and the risk of false positive or negative errors due to their inherent single-signal readout.To overcome these shortcomings,new PEC-coupled dual-modal analysis approaches have been developed,where a dual-response signal can be derived through two completely different mechanisms and independent signal transduction pathways.This review introduces the basic principles of PEC biosensing and enumerates and classifies the substrate or probe selections,constructions,and applications of PEC-coupled dual-modal biosensors.Furthermore,the challenges and developmental prospects of PEC-coupled dual-mode sensing technologies are evaluated and discussed.We hope that this review will provide valuable insights into the latest advancements and practical applications of dual-mode PEC bioanalysis,which will be of great interest to those seeking to stay informed in this field.
基金supported by the National Natural Science Foundation of China(Nos.61404043,61401137)the Key Laboratory of Infrared Imaging Material and Detectors,Shanghai Institute of Technical Physics,CAS(Nos.IIMDKFJJ-13-06,IIMDKFJJ-14-03)the Fundamental Research Funds for the Central University(No.2015HGZX0026)
文摘A 50 MHz 1.8/0.9 V dual-mode buck DC-DC converter is proposed in this paper. A dual-mode control for high-frequency DC-DC converter is presented to enhance the conversion efficiency of light-load in this paper. A novel zero-crossing detector is proposed to shut down synchronous rectification transistor NMOS when the inductor crosses zero, which can decrease the power loss caused by reverse current and the trip point is adjusted by regulating IBIAS (BIAS current). A new logic control for pulse-skipping modulation loop is also presented in this paper, which has advantages of simple structure and low power loss. The proposed converter is realized in SMIC 0.18μm 1-poly 6-metal mixed signal CMOS process. With switching loss, conduction loss and reverse current related loss optimized, an efficiency of 57% is maintained at 10 mA, and a peak efficiency of 71% is measured at nominal operating conditions with a voltage conversion of 1.8 to 0.9 V.