Buses and subways are essential to urban public transportation systems and an important engine for activating high-quality urban development. Traditional multi-modal transportation networks focus on the structural fea...Buses and subways are essential to urban public transportation systems and an important engine for activating high-quality urban development. Traditional multi-modal transportation networks focus on the structural feature mining of single-layer networks or each layer, ignoring the structural association of multi-layer networks. In this paper, we examined the multi-layer structural property of the bus-subway network of Shanghai at both global and nodal scales. A dual-layer model of the city’s bus and subway system was built. Single-layer complex network indicators were also extended. The paper also explored the spatial coupling properties of the city’s bus and subway system and identified its primary traffic nodes. It was found that 1) the dual-layer network increased the network’s connectivity to a certain extent and broke through the spatial limitation in terms of physical structure, making the connection between any two locations more direct. 2) The dual-layer network changed the topological characteristics of the transit network, increasing the centrality value and bit order in degree centrality, betweenness centrality, and closeness centrality to different degrees, and making each centrality tend to converge to the city center in spatial distribution. Enhancing the management of critical network nodes would help the integrated public transportation system operate more effectively and provide higher-quality services.展开更多
文摘Buses and subways are essential to urban public transportation systems and an important engine for activating high-quality urban development. Traditional multi-modal transportation networks focus on the structural feature mining of single-layer networks or each layer, ignoring the structural association of multi-layer networks. In this paper, we examined the multi-layer structural property of the bus-subway network of Shanghai at both global and nodal scales. A dual-layer model of the city’s bus and subway system was built. Single-layer complex network indicators were also extended. The paper also explored the spatial coupling properties of the city’s bus and subway system and identified its primary traffic nodes. It was found that 1) the dual-layer network increased the network’s connectivity to a certain extent and broke through the spatial limitation in terms of physical structure, making the connection between any two locations more direct. 2) The dual-layer network changed the topological characteristics of the transit network, increasing the centrality value and bit order in degree centrality, betweenness centrality, and closeness centrality to different degrees, and making each centrality tend to converge to the city center in spatial distribution. Enhancing the management of critical network nodes would help the integrated public transportation system operate more effectively and provide higher-quality services.