The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,...The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton(3DIO FCSe-QDs@NC)is elaborately designed for both sulfur cathode and Li metal anode.The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble Li PSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors.Simultaneously,the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites.Taking advantage of these merits,the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability(a low decay rate of 0.014%over 2,000 cycles at 2C).Remarkably,a promising areal capacity of 8.41 mAh cm^(-2)can be achieved at the sulfur loading up to 8.50 mg cm^(-2)with an ultra-low electrolyte/sulfur ratio of 4.1μL mg^(-1).This work paves the bi-serve host design from systematic experimental and theoretical analysis,which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries.展开更多
Developing sulfur cathodes with high catalytic activity on accelerating the sluggish redox kinetics of lithium polysulfides(Li PSs) and unveiling their mechanisms are pivotal for advanced lithium–sulfur(Li–S)batteri...Developing sulfur cathodes with high catalytic activity on accelerating the sluggish redox kinetics of lithium polysulfides(Li PSs) and unveiling their mechanisms are pivotal for advanced lithium–sulfur(Li–S)batteries. Herein, MoS2 is verified to reduce the Gibbs free energy for rate-limiting step of sulfur reduction and the dissociation energy of lithium sulfide(Li2 S) for the first time employing theoretical calculations. The Mo S2 nanosheets coated on mesoporous hollow carbon spheres(MHCS) are then reasonably designed as a sulfur host for high-capacity and long-life Li–S battery, in which MHCS can guarantee the high sulfur loading and fast electron/ion transfer. It is revealed that the shuttle effect is efficiently inhibited because of the boosted conversion of Li PSs. As a result, the coin cell based on the MHCS@Mo S2-S cathode exhibits stable cycling performance maintaining 735.7 mAh g^(-1) after 500 cycles at 1.0 C. More importantly, the pouch cell employing the MHCS@Mo S2-S cathodes achieves high specific capacity of1353.2 m Ah g^(-1) and prominent cycle stability that remaining 960.0 m Ah g^(-1) with extraordinary capacity retention of 79.8% at 0.1 C after 170 cycles. Therefore, this work paves a new avenue for developing practical high specific energy and long-life pouch-type Li–S batteries.展开更多
Photocatalytic dual-functional reaction under visible light irradiation represents a sustainable development strategy.In detail,H2production coupled with benzylamine oxidation can remarkably lower the cost by replacin...Photocatalytic dual-functional reaction under visible light irradiation represents a sustainable development strategy.In detail,H2production coupled with benzylamine oxidation can remarkably lower the cost by replacing sacrificial agents.In this work,Cd S quantum dots(Cd S QDs)were successfully loaded onto the surface of a porphyrinic metal-organic framework(Pd-PCN-222)by the electrostatic selfassembly at room temperature.The consequent Pd-PCN-222/CdS heterojunction composites displayed superb photocatalytic activity under visible light irradiation,achieving a H2production and benzylamine oxidation rate of 5069 and 3717μmol g^(-1)h^(-1)with>99%selectivity in 3 h.There is no noticeable loss of catalytic capability during three successive runs.Mechanistic studies by in situ electron spin resonance and X-ray photoelectron spectroscopy disclosed that CdS QDs injected photoexcited electrons to Pd-PCN-222 and then Zr6clusters under visible-light irradiation,and thus Cd S QDs and Zr6clusters behave as the photocatalytic oxidation and reduction centers,respectively.展开更多
Photocatalytic water splitting using semiconductor photocatalysts is a promising approach for the production of carbon-neutral,sustainable and clean hydrogen fuel.However,the separation and transport of photoinduced c...Photocatalytic water splitting using semiconductor photocatalysts is a promising approach for the production of carbon-neutral,sustainable and clean hydrogen fuel.However,the separation and transport of photoinduced carriers are generally considered to be rate-limiting steps,and their low efficiency remains a major challenge.Therefore,much effort has been devoted to developing new strategies in surface/interface engineering of photocatalysts to improve the dynamics of charge separation/transport.This feature article briefly summarizes recent advances in photocatalyst surface/interface engineering by our research group,which have been achieved through the design of various novel photocatalysts,including interfacial modulation,heterostructure construction,heteroatom doping,single atom and diatom sites.The article is divided into three parts:first,we briefly introduce the three key processes involved in solar water splitting and reveal relationships between the properties of nanostructural photocatalysts and the fundamentals of water splitting;second,we detail methods and strategies for surface and interfacial structures to improve the efficiency of the fundamental processes,especially charge separation;finally,we explore prospects for photocatalytic water splitting applications.This article provides a valuable resource and strategies for researchers currently working in the field of photocatalytic water splitting.展开更多
Sensitive detection of Staphylococcus aureus enterotoxin B(SEB)is of importance for preventing food poisoning from threatening human health.In this work,an electrochemical and colorimetric dual-signal detection assay ...Sensitive detection of Staphylococcus aureus enterotoxin B(SEB)is of importance for preventing food poisoning from threatening human health.In this work,an electrochemical and colorimetric dual-signal detection assay of SEB was developed.The probe(Ab2/AuPt@Fe-N-C)was bound to SEB captured by Ab1,where the Ab2/AuPt@Fe-N-C triggered methylene blue degradation and resulted in the decrease of electrochemical signal.Furthermore,the probe catalyzed the oxidation of 3,3’,5,5’-tetramethyl biphenyl to generate a colorimetric absorbance at 652 nm.Once the target was captured and formed a sandwich-like complex,the color changed from colorless to blue.SEB detection by colorimetric and electrochemical methods showed a linear relationship in the concentration ranges of 0.0002-10.0000 and 0.0005-10.0000 ng/mL,with limits of detection of 0.0667 and 0.1670 pg/mL,respectively.The dual-signal biosensor was successfully used to detect SEB in milk and water samples,which has great potential in toxin detection in food and the environment.展开更多
The photocatalytic conversion of biomass into high-value chemicals,coupled with simultaneous hydrogen(H_(2))evolution,leveraging the electrons and holes generated by solar energy,holds great promise for addressing ene...The photocatalytic conversion of biomass into high-value chemicals,coupled with simultaneous hydrogen(H_(2))evolution,leveraging the electrons and holes generated by solar energy,holds great promise for addressing energy demands.In this study,we constructed a dual functional photocatalytic system formed by NiS loaded on Ni doped two-dimensional(2D)CdS nanosheet(NiS/Ni-CdSNS)heterostructure for visible-light-driven H_(2)evolution and ethanol oxidation to acetaldehyde.Remarkably,the 2D NiS/NiCdSNS exhibited significant activity and selectivity in both photocatalytic H_(2)evolution and ethanol oxidation,achieving yields of 7.98 mmol g^(-1)h^(-1)for H_(2)and 7.33 mmol g^(-1)h^(-1)for acetaldehyde.The heterogeneous interface of the composite facilitated efficient charge separation,while NiS provided abundant sites for proton reduction,thereby promoting the overall dual-functional photocatalytic activity.Density functional theory calculations further reveal that both Ni doping and NiS loading can reduce the reaction energy barrier of ethanol oxidation of free radicals,and NiS/Ni-CdSNS composite materials exhibit stronger ethanol C-H activation ability to generate key intermediate·CH(OH)CH_(3)on the surface.This work serves as a valuable guide for the rational design of efficient dual functional photocatalytic systems that combine H_(2)evolution with the selective conversion of organic compounds into high-value chemicals.展开更多
The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispers...The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispersed Nb N quantum dots anchored on nitrogen-doped hollow carbon nanorods(NbN@NHCR)are elaborately developed as efficient Li PSs immobilizer and Li stabilizer for high-performance Li-S full batteries.Density functional theory(DFT)calculations and experimental characterizations demonstrate that the sulfiphilic and lithiophilic NbN@NHCR hybrid can not only efficiently immobilize the soluble Li PSs and facilitate diffusion-conversion kinetics for alleviating the shuttling effect,but also homogenize the distribution of Li+ions and regulate uniform Li deposition for suppressing Li-dendrite growth.As a result,the assembled Li-S full batteries(NbN@NHCR-S||Nb N@NHCR-Li)deliver excellent long-term cycling stability with a low decay rate of 0.031%per cycle over 1000 cycles at high rate of 2 C.Even at a high S loading of 5.8 mg cm^(-2)and a low electrolyte/sulfur ratio of 5.2μL mg^(-1),a large areal capacity of 6.2 mA h cm^(-2)can be achieved in Li-S pouch cell at 0.1 C.This study provides a new perspective via designing a dual-functional sulfiphilic and lithiophilic hybrid to address serious issues of the shuttle effect of S cathode and dendrite growth of Li anode.展开更多
Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large...Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large volume change and active material loss in lithium-ion batteries during prolonged cycles. Herein, a hydrophilic polymer poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was explored as a dual-functional aqueous binder for the preparation of high-performance silicon anode and sulfur cathode. Benefiting from the dual functions of PMVEMA, i.e., the excellent dispersion ability and strong binding forces, the as-prepared electrodes exhibit improved capacity, rate capability and long-term cycling performance. In particular, the as-prepared Si electrode delivers a high initial discharge capacity of 1346.5 mAh g^(−1) at a high rate of 8.4 A/g and maintains 834.5 mAh g^(−1) after 300 cycles at 4.2 A/g, while the as-prepared S cathode exhibits enhanced cycling performance with high remaining discharge capacities of 663.4 mAh g^(−1) after 100 cycles at 0.2 C and 487.07 mAh g^(−1) after 300 cycles at 1 C, respectively. These encouraging results suggest that PMVEMA could be a universal binder to facilitate the green manufacture of both anode and cathode for high-capacity energy storage systems.展开更多
Hydrogen,as a green and clean next-generation fuel,is a key to achieving the goal of carbon neutrality.Constructing an electrocatalyst with bifunctional hydrogen evolution and oxygen evolution activity in the same ele...Hydrogen,as a green and clean next-generation fuel,is a key to achieving the goal of carbon neutrality.Constructing an electrocatalyst with bifunctional hydrogen evolution and oxygen evolution activity in the same electrolyte is a key technology for producing hydrogen via water splitting.Herein,a bimetallic active site catalyst,which possessed an edge-riched MoS_(2)nanoflakes array vertically growing on cubic CoS_(2),forming a nuclear-shell heterogeneous configuration,termed CSC-Mo S_(2)@Co S_(2).was reported The optimal CSC-Mo S_(2)@Co S_(2)-24 possessed good dualfunctional electrocatalytic activity(hydrogen evolution(HER),10 m A·cm^(-2)@241.5 m V and oxygen evolution(OER),10 m A·cm^(-2)@350 m V).Especially,CSC-Mo S_(2)@CoS_(2)-24 exhibited an extremely high mass activity for HER,and only required an overpotential of~550 m V when reaching a large current density of 1422 m A·mg^(-1),which was20.6-fold that of the bulk CoS_(2)(69 m A·mg^(-1)),as well as exhibiting stability of up to 100 h.The good electrocatalytic performance was attributed to the nuclear-shell heterostructure of Mo S_(2)@CoS_(2)hybrid could bring critical synergies,improving efficient mass transfer and electron transfer processes between Co S_(2)and Mo S_(2),which collaboratively promoted the electrocatalytic kinetics.It is foreseeable that the method proposed in this work will have guiding value for the preparation of dual-functional electrocatalysts with multi-interface heterostructures by assembling layered sulfides on cubic sulfides.展开更多
Novel C-BiOCl/Bi_(2)S_(3) composites are prepared by hydrothermal C doping in BiOCl and in-situ growth of Bi_(2)S_(3) on C-BiOCl.Compared with BiOCl,C-BiOCl has a larger exposed surface area and can effectively absorb...Novel C-BiOCl/Bi_(2)S_(3) composites are prepared by hydrothermal C doping in BiOCl and in-situ growth of Bi_(2)S_(3) on C-BiOCl.Compared with BiOCl,C-BiOCl has a larger exposed surface area and can effectively absorb visible light.The construction of a heterojunction in C-BiOCl/Bi_(2)S_(3) further promotes the separation and transfer of photogenerated carriers.With improved photoelectric properties,the optimized 5C-BiOCl/5Bi_(2)S_(3) is applied as a dual-functional composite for photoelectrochemical(PEC)detection and photocatalytic(PC)reduction of Cr(VI).The 5C-BiOCl/5Bi_(2)S_(3) shows a linear range of 0.02-80μM for PEC cathodic detection of Cr(VI)with a detection limit of 0.01628μM.Additionally,99.5%of Cr(VI)can be removed via absorption and PC reduction by 5C-BiOCl/5Bi_(2)S_(3),with the reduction rate constant(k)336 times higher than that of BiOCl.展开更多
The design and synthesis of non-precious metal dual-functional electrocatalysts through the modulation of electronic structure are important for the development of renewable hydrogen energy.Herein,MnS_(2)/MnO_(2)-CC h...The design and synthesis of non-precious metal dual-functional electrocatalysts through the modulation of electronic structure are important for the development of renewable hydrogen energy.Herein,MnS_(2)/MnO_(2)-CC heterostructure dual-functional catalysts with ultrathin nanosheets were prepared by a twostep electrodeposition method for efficient acidic hydrogen evolution reaction(HER) and degradation of organic wastewater(such as methylene blue(MB)).The electronic structure of Mn atoms at the MnS_(2)/MnO_(2)-CC heterostructure interface is reconfigured under the joint action of S and O atoms.Theoretical calculations show that the Mn d-band electron distribution in MnS_(2)/MnO_(2)-CC catalyst has higher occupied states near the Fermi level compared to the MnO_(2) and MnS_(2) catalysts,which indicates that MnS_(2)/MnO_(2)-CC catalyst has better electron transfer capability and catalytic activity.The MnS_(2)/MnO_(2)-CC catalysts require overpotential of only 66 and 116 mV to reach current density of 10 and 100 mA cm^(-2)in MB/H_(2)SO_(4) media.The MnS_(2)/MnO_(2)-CC catalyst also has a low Tafel slope(26.72 mV dec^(-1)) and excellent stability(the performance does not decay after 20 h of testing).In addition,the MB removal efficiency of the MnS_(2)/MnO_(2)-CC catalyst with a better kinetic rate(0.0226) can reach 97.76%,which is much higher than that of the MnO_(x)-CC catalyst(72.10%).This strategy provides a new way to develop efficient and stable non-precious metal dual-functional electrocatalysts for HER and organic wastewater degradation.展开更多
Achieving hydrogen production and simultaneous decomposition of organic pollutants through dual-functional photocatalytic reactions has received increasing attention due to the environmentally friendly and cost-effect...Achieving hydrogen production and simultaneous decomposition of organic pollutants through dual-functional photocatalytic reactions has received increasing attention due to the environmentally friendly and cost-effective characteristics of this approach.In this work,an urchin-like oxygen-doped MoS_(2)/ZnIn_(2)S_(4)(OMS/ZIS)composite was fabricated for the first time using a simple solvothermal method.The unique microstructure with abundant active sites and fast charge transfer channels further shortened the charge migration distance and compressed carrier recombination.The obtained composite exhibited an efficient H2 evolution reaction rate of 12.8 mmol/g/h under visible light,which was nearly times higher than pristine ZnIn_(2)S_(4),and the apparent quantum efficiency was 14.9%(420 nm).The results of the simultaneous photocatalytic H2 evolution and organic pollutant decomposition test were satisfactory,resulting in decomposition efficiencies of resorcinol,tetracycline,and bisphenol A that reached 41.5%,63.5%,and 53.0%after 4 h,respectively,and the highest H2 evolution rate was 672.7 umol/g/h for bisphenol A.Furthermore,natural organic matter(NOM)abundantly found in actual water was adopted as an electron donor for H production under simulated sunlight irradiation,indicating the promising practicability of simultaneous hydrogen evolution and NOM decomposition.Moreover,the mechanisms of the dual-purpose photocatalytic reactions,as well as the synergistic effect between the molecular structures of the organic pollutants and the corresponding adsorption behavior on the photocatalyst surface were illustrated in detail.These obtained results may serve as an inspiration for the rational design of highly efficient,dual-functional photocatalysts in the future.展开更多
Marine biofouling is a worldwide challenge that needs to be solved urgently.Poly(dimethylsiloxane)(PDMS)-based fouling release coatings with low surface free energy(SFE)could effectively inhibit bio-fouling.Neverthele...Marine biofouling is a worldwide challenge that needs to be solved urgently.Poly(dimethylsiloxane)(PDMS)-based fouling release coatings with low surface free energy(SFE)could effectively inhibit bio-fouling.Nevertheless,their poor mechanical durability,adhesive strength,and antifouling performance under static conditions significantly limit their applications.Herein,a novel mechanically robust Al_(2)O_(3)-PDMS-Cu composite coating with strong adhesive strength and remarkable antifouling performance was developed.The Al_(2)O_(3)-PDMS-Cu coating loaded with a small amount of Cu was fabricated by infiltrating PDMS into plasma-sprayed micro/nano-scaled porous Al_(2)O_(3)-Cu coating.Results showed that the fabri-cation of this Al_(2)O_(3)-PDMS-Cu coating did not alter the surface hydrophobicity and SFE of PDMS signif-icantly,thus presenting little influence on its inherent fouling release property.After rigorous abrasion test,the Al_(2)O_(3)-PDMS-Cu coating presented remarkably improved surface hydrophobicity due to the ex-posure of micro/nano structure,rather than falling offas that of PDMS coating.The combination of excel-lent abrasion resistance and one order of magnitude higher adhesive strength and hardness than PDMS coating contributed to the outstanding mechanical robustness of Al_(2)O_(3)-PDMS-Cu coating.Additionally,the antifouling assays against marine bacteria adhesion(95%reduction rate for Escherichia coli.(E.coli))and algae attachment(96%and 94%reduction rates for Chlorella and Phaeodactylum tricornutum(P.tricor-nutum),respectively after 21 days of incubation)demonstrated the superior antifouling performance of the Al_(2)O_(3)-PDMS-Cu coating.Thus,a high-performance Al_(2)O_(3)-PDMS-Cu antifouling coating with excellent mechanical robustness and long-term antifouling performance was achieved via the combination of me-chanical durability of Al_(2)O_(3)skeleton and the dual-functional antifouling strategy,i.e.,the fouling release property of PDMS and fouling resistance of Cu.展开更多
The intrinsic poor electrical conductivity,severe dissolution of K x S y intermediates,and inferior conversion reaction reversibility extremely impede the practical application of the transition-metal chalcogenides(TM...The intrinsic poor electrical conductivity,severe dissolution of K x S y intermediates,and inferior conversion reaction reversibility extremely impede the practical application of the transition-metal chalcogenides(TMDs)anode for potassium-ion batteries(PIBs).Herein,a rationally designed Cu_(9)S_(5)/MoS_(2)/C heterostruc-ture hollow nanocage was synthesized with assistance from metal-organic frameworks(MOFs)precursor.During the K-storage process,the homogeneously distributed the sulfiphilic nature of Cu 0 reaction prod-uct could act as a dual-functional catalyst,not only facilitating the rapid charge transfer but also effec-tively anchoring(K x S y)polysulfides,thus boosting K-storage reactions reversibility during the conversion reaction process.When applied as an anode for PIBs,the as-prepared heterostructure exhibits excellent reversible capacity and long cycle lifespan(350.5 mAh g^(-1)at 0.1 A g^(-1)and 0.04%per cycle capacity de-cay at 1 A g^(-1)after 1000 cycles).Additionally,the potassium storage mechanism is distinctly revealed by in-situ characterizations.The nanoarchitecture designing strategy for the advanced electrode in this work could provide vital guidance for relevant energy storage materials.展开更多
Lithium-sulfur(Li-S)batteries have been widely investigated attributed to their advantages of high energy density and cost effectiveness.However,it is still limited by the uncontrolled shuttle effect of the sulfur cat...Lithium-sulfur(Li-S)batteries have been widely investigated attributed to their advantages of high energy density and cost effectiveness.However,it is still limited by the uncontrolled shuttle effect of the sulfur cathode and the promiscuous dendrite growth over the lithium anode.To handle the above issues,the highly conductive CoTe catalyst is precisely loaded onto nitrogendoped nanotube and graphene-like carbon(CoTe NCGs),which is employed as a bi-functionally integrated host.On the lithium anode,the CoTe NCGs with excellent lithiophilic property effectively regulate the uniform deposition of lithium and achieve the effect of suppressing the disorderly growth of lithium dendrites.On the sulfur cathode,the electrochemical conversion of lithium polysulfides(LiPSs)is catalyzed to mitigate the notorious shuttle effect.In view of the bifunctionality of CoTe NCGs,the assembled full cell can be steadily stable even for 800 cycles at a high rate of 2 C,and the capacity decay rate is only 0.05%per cycle.The areal capacity of 6.0 mAh·cm^(−2) is well retained after 50 cycles under the conditions of high sulfur loading,poor electrolyte(a low electrolyte-to-sulfur ratio,E/S=4.2),and low negative to positive capacity ratio(N/P=1.6:1).展开更多
The rational fabrication of photocatalysts with dual functions upon visible light, such as photocatalytic radioactive U(Ⅵ)reduction and value-added organic oxidation, is highly desirable but remains huge challenge. H...The rational fabrication of photocatalysts with dual functions upon visible light, such as photocatalytic radioactive U(Ⅵ)reduction and value-added organic oxidation, is highly desirable but remains huge challenge. Here, we couple the photocatalytic U(Ⅵ) reduction with the oxidative organic synthesis to one system using novel extended π-conjugated framework(Cu@ThTCPP) without the expense of sacrificial reagents. Noticeably, the as-prepared Cu@Th-TCPP linked by tetratopic tetrakis(4-carboxyphenyl)porphyrin(TCPP) ligand and unique Th(μ-O)(HCOO)(HO)secondary building unit(SBU) exhibits significantly enhanced activity when the photocatalytic U(Ⅵ) reduction and thioanisole oxidation were integrated to one system.Further experimental characterizations demonstrate that the highly conjugated framework of Cu@Th-TCPP is good for the charge transfer and separation, while incorporating Cusite further accelerates the charge-carrier dynamics, thus giving rise to the dual-functional property. Apparently, this strategy conforms to atomic economy, opens a new horizon to address radioactive environmental pollution in natural water systems and soils, and simultaneously produces valuable chemicals.展开更多
To anchor the polysulfide and enhance the conversion kinetics of polysulfide to disulfide/sulfide is critical for improving the performance of lithium-sulfur battery.For this purpose,the graphene-supported tin(Ⅳ) pho...To anchor the polysulfide and enhance the conversion kinetics of polysulfide to disulfide/sulfide is critical for improving the performance of lithium-sulfur battery.For this purpose,the graphene-supported tin(Ⅳ) phosphate(Sn(HPO_4)_2·H_2 O,SnP) composites(SnP-G) are employed as the novel sulfur hosts in this work.When compared to the graphene-sulfur and carbon-sulfur composites,the SnP-G-sulfur composites exhibit much better cycling performance at 1.0 C over 800 cycles.Meanwhile,the pouch cell fabricated with the SnP-G-sulfur cathodes also exhibits excellent performance with an initial capacity of1266.6 mAh g^(-1)(S) and capacity retention of 76.9% after 100 cycles at 0.1 C.The adsorption tests,density functional theory(DFT) calculations in combination with physical cha racterizations and electrochemical measurements provide insights into the mechanism of capture-accelerated conversion mechanism of polysulfide at the surface of SnP.DFT calculations indicate that the Li-O bond formed between Li atom(from Li_2 S_n,n=1,2,4,6,8) and O atom(from PO_3-OH in SnP) is the main reason for the strong interactions between Li_2 S_n and SnP.As a result,SnP can effectively restrain the shuttle effect and improving the cycling performance of Li-S cell.In addition,by employing the climbing-image nudged elastic band(ciNEB) methods,the energy barrier for lithium sulfide decomposition(charging reaction) on SnP is proved to decrease significantly compared to that on graphene.It can be concluded that SnP is an effective sulfur hosts acting as dual-functional accelerators for the conversion reactions of polysulfude to sulfide(discharging reaction) as well as polysulfide to sulfur(charging reaction).展开更多
Nanoparticles have been widely explored for combined therapeutic and diagnostic applications. For example, lipid-based nanoparticles have been used to encapsulate multiple types of agents and achieve multi-functions. ...Nanoparticles have been widely explored for combined therapeutic and diagnostic applications. For example, lipid-based nanoparticles have been used to encapsulate multiple types of agents and achieve multi-functions. Herein, we enabled a co-delivery of mRNA molecules and superparamagnetic iron oxide nanoparticles (SPIONs) by using an amino-ester lipid-like nanomaterial. An orthogonal experimental design was used to identify the optimal formulation. The optimal formulation, MPA-Ab-8 LLNs, not only showed high encapsulation of both mRNA and SPIONs, but also increased the r2 relaxivity of SPIONs by more than 1.5-fold in vitro. MPA-Ab-8 LLNs effectively delivered mRNA and SPIONs into cells, and consequently induced high protein expression as well as strong MRI contrast. Consistent herewith, we observed both mRNA-mediated protein expression and an evident negative contrast enhancement of MRI signal in mice. In conclusion, amino-ester nanomaterials demonstrate great potential as delivery vehicles for theranostic applications.展开更多
Sodium-tellurium(Na-Te)battery,thanks to high theoretical capacity and abundant sodium source,has been envisaged as one promising battery technology,its practical application yet faces daunting challenges regarding ho...Sodium-tellurium(Na-Te)battery,thanks to high theoretical capacity and abundant sodium source,has been envisaged as one promising battery technology,its practical application yet faces daunting challenges regarding how to mitigate the critical issues of uncontrollable dendrites growth at Na anode and polytellurides shuttling effect at Te cathode.We here report an elaborative design for fabrication of microsphere skeleton nanohybrids with three-dimensional(3D)hierarchical porous carbon loading CeO_(2)quantum dots(CeO_(2)-QDs/HPC),which feature highly favorable properties of sodiophilic and catalysis for hosting sodium and tellurium,respectively.The systematic investigations coupling with first-principle calculations demonstrate the CeO_(2)-QDs/HPC not only offers favorable structure and abundant electrocatalytic sites for facilitating interconversion between Te and NaxTe as a cathode host,but also can function as dendrite inhibitor anode host for reversible sodium electro-plating/deposition.Such Na-Te battery exhibits admiring electrochemical performance with an impressive specific capacity of 392 mAh g1,a long cycling stability over 1000 cycles,as well as remarkably high energy density of 192 Wh kg1 based on the total mass of anode and cathode.Such proof-of-concept bifunctional host design for active electrode materials can render a new insight and direction to the development of high-performance Na-Te batteries.展开更多
The terahertz technology has attracted considerable attention because of its potential applications in various fields.However,the research of functional devices,including polarization converters,remains a major demand...The terahertz technology has attracted considerable attention because of its potential applications in various fields.However,the research of functional devices,including polarization converters,remains a major demand for practical applications.In this work,a reflective dual-functional terahertz metadevice is presented,which combines two different polarization conversions through using a switchable metasurface.Different functions can be achieved because of the insulator-to-metal transition of vanadium dioxide(VO_(2)).At room temperature,the metadevice can be regarded as a linear-to-linear polarization convertor containing a gold circular split-ring resonator(CSRR),first polyimide(PI)spacer,continuous VO_(2) film,second PI spacer,and gold substrate.The converter possesses a polarization conversion ratio higher than 0.9 and a bandwidth ratio of 81%in a range from 0.912 THz to 2.146 THz.When the temperature is above the insulator-to-metal transition temperature(approximately 68℃)and VO_(2) becomes a metal,the metasurface transforms into a wideband linear-to-circular polarization converter composed of the gold CSRR,first PI layer,and continuous VO_(2) film.The ellipticity is close to-1,while the axis ratio is lower than 3 dB in a range of 1.07 THz-1.67 THz.The metadevice also achieves a large angle tolerance and large manufacturing tolerance.展开更多
基金financial support from the National Natural Science Foundation of China(Grant Nos.51871188 and 51931006)the Fundamental Research Funds for the Central Universities of China(Xiamen University:Nos.20720200068,20720190007 and 20720220074)+2 种基金Guangdong Basic and Applied Basic Research Foundation(No.2021A1515010139)Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(HRTP-[2022]-22)the“Double-First Class”Foundation of Materials Intelligent Manufacturing Discipline of Xiamen University。
文摘The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton(3DIO FCSe-QDs@NC)is elaborately designed for both sulfur cathode and Li metal anode.The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble Li PSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors.Simultaneously,the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites.Taking advantage of these merits,the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability(a low decay rate of 0.014%over 2,000 cycles at 2C).Remarkably,a promising areal capacity of 8.41 mAh cm^(-2)can be achieved at the sulfur loading up to 8.50 mg cm^(-2)with an ultra-low electrolyte/sulfur ratio of 4.1μL mg^(-1).This work paves the bi-serve host design from systematic experimental and theoretical analysis,which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries.
基金supported by the funding from the Strategy Priority Research Program of Chinese Academy of Science (Grant No. XDA17020404)DICP&QIBEBT (DICP&QIBEBT UN201702)+8 种基金R&D Projects in Key Areas of Guangdong Province (2019B090908001)Science and Technology Innovation Foundation of Dalian (2018J11CY020)Defense Industrial Technology Development Program (JCKY2018130C107)National Natural Science Foundation of China (Grants 51872283)Liao Ning Revitalization Talents Program (Grant XLYC1807153)Natural Science Foundation of Liaoning Province (Grant 20180510038)DICP (DICP ZZBS201708, DICP ZZBS201802)DNL Cooperation FundCAS (DNL180310, DNL180308, DNL201912, and DNL201915)。
文摘Developing sulfur cathodes with high catalytic activity on accelerating the sluggish redox kinetics of lithium polysulfides(Li PSs) and unveiling their mechanisms are pivotal for advanced lithium–sulfur(Li–S)batteries. Herein, MoS2 is verified to reduce the Gibbs free energy for rate-limiting step of sulfur reduction and the dissociation energy of lithium sulfide(Li2 S) for the first time employing theoretical calculations. The Mo S2 nanosheets coated on mesoporous hollow carbon spheres(MHCS) are then reasonably designed as a sulfur host for high-capacity and long-life Li–S battery, in which MHCS can guarantee the high sulfur loading and fast electron/ion transfer. It is revealed that the shuttle effect is efficiently inhibited because of the boosted conversion of Li PSs. As a result, the coin cell based on the MHCS@Mo S2-S cathode exhibits stable cycling performance maintaining 735.7 mAh g^(-1) after 500 cycles at 1.0 C. More importantly, the pouch cell employing the MHCS@Mo S2-S cathodes achieves high specific capacity of1353.2 m Ah g^(-1) and prominent cycle stability that remaining 960.0 m Ah g^(-1) with extraordinary capacity retention of 79.8% at 0.1 C after 170 cycles. Therefore, this work paves a new avenue for developing practical high specific energy and long-life pouch-type Li–S batteries.
基金support from the National Natural Science Foundation of China(Nos.21773314,21821003 and 21890382)the Guangdong Natural Science Funds for Distinguished Young Scholar(No.2019B151502017)。
文摘Photocatalytic dual-functional reaction under visible light irradiation represents a sustainable development strategy.In detail,H2production coupled with benzylamine oxidation can remarkably lower the cost by replacing sacrificial agents.In this work,Cd S quantum dots(Cd S QDs)were successfully loaded onto the surface of a porphyrinic metal-organic framework(Pd-PCN-222)by the electrostatic selfassembly at room temperature.The consequent Pd-PCN-222/CdS heterojunction composites displayed superb photocatalytic activity under visible light irradiation,achieving a H2production and benzylamine oxidation rate of 5069 and 3717μmol g^(-1)h^(-1)with>99%selectivity in 3 h.There is no noticeable loss of catalytic capability during three successive runs.Mechanistic studies by in situ electron spin resonance and X-ray photoelectron spectroscopy disclosed that CdS QDs injected photoexcited electrons to Pd-PCN-222 and then Zr6clusters under visible-light irradiation,and thus Cd S QDs and Zr6clusters behave as the photocatalytic oxidation and reduction centers,respectively.
基金supported by the National Natural Science Foundation of China(22225604,22076082,22176140)the Frontiers Science Center for New Organic Matter(63181206)Haihe Laboratory of Sustainable Chemical Transformations。
文摘Photocatalytic water splitting using semiconductor photocatalysts is a promising approach for the production of carbon-neutral,sustainable and clean hydrogen fuel.However,the separation and transport of photoinduced carriers are generally considered to be rate-limiting steps,and their low efficiency remains a major challenge.Therefore,much effort has been devoted to developing new strategies in surface/interface engineering of photocatalysts to improve the dynamics of charge separation/transport.This feature article briefly summarizes recent advances in photocatalyst surface/interface engineering by our research group,which have been achieved through the design of various novel photocatalysts,including interfacial modulation,heterostructure construction,heteroatom doping,single atom and diatom sites.The article is divided into three parts:first,we briefly introduce the three key processes involved in solar water splitting and reveal relationships between the properties of nanostructural photocatalysts and the fundamentals of water splitting;second,we detail methods and strategies for surface and interfacial structures to improve the efficiency of the fundamental processes,especially charge separation;finally,we explore prospects for photocatalytic water splitting applications.This article provides a valuable resource and strategies for researchers currently working in the field of photocatalytic water splitting.
基金This work was financially supported by Major Science and Technology Project of Yunnan Province(202302AE090022)Key Research and Development Program of Yunnan(202203AC100010)+4 种基金the National Natural Science Foundation of China(32160597,32160236,32371463)National Key Research and Development Program of China(2022YFC2601604)Cardiovascular Ultrasound Innovation Team of Yunnan Province(202305AS350021)Spring City Plan:the High-level Talent Promotion and Training Project of Kunming(2022SCP001)the second phase of“Double-First Class”Program Construction of Yunnan University.
文摘Sensitive detection of Staphylococcus aureus enterotoxin B(SEB)is of importance for preventing food poisoning from threatening human health.In this work,an electrochemical and colorimetric dual-signal detection assay of SEB was developed.The probe(Ab2/AuPt@Fe-N-C)was bound to SEB captured by Ab1,where the Ab2/AuPt@Fe-N-C triggered methylene blue degradation and resulted in the decrease of electrochemical signal.Furthermore,the probe catalyzed the oxidation of 3,3’,5,5’-tetramethyl biphenyl to generate a colorimetric absorbance at 652 nm.Once the target was captured and formed a sandwich-like complex,the color changed from colorless to blue.SEB detection by colorimetric and electrochemical methods showed a linear relationship in the concentration ranges of 0.0002-10.0000 and 0.0005-10.0000 ng/mL,with limits of detection of 0.0667 and 0.1670 pg/mL,respectively.The dual-signal biosensor was successfully used to detect SEB in milk and water samples,which has great potential in toxin detection in food and the environment.
基金supported by the National Key R&D Program of China(No.2022YFB1903200)the National Natural Science Foundation of China(Nos.U23A2087,22372137,22102136,22072057,22227802,22172126)+2 种基金the Key Research and Development Program of Guangxi(No.GUIKE AB23026116)the Fundamental Research Funds for the Central Universities(Nos.20720220105,20720232005)the XMU Training Program of Innovation and Enterpreneurship for Undergraduates(Nos.2022Y1132,202310384027)。
文摘The photocatalytic conversion of biomass into high-value chemicals,coupled with simultaneous hydrogen(H_(2))evolution,leveraging the electrons and holes generated by solar energy,holds great promise for addressing energy demands.In this study,we constructed a dual functional photocatalytic system formed by NiS loaded on Ni doped two-dimensional(2D)CdS nanosheet(NiS/Ni-CdSNS)heterostructure for visible-light-driven H_(2)evolution and ethanol oxidation to acetaldehyde.Remarkably,the 2D NiS/NiCdSNS exhibited significant activity and selectivity in both photocatalytic H_(2)evolution and ethanol oxidation,achieving yields of 7.98 mmol g^(-1)h^(-1)for H_(2)and 7.33 mmol g^(-1)h^(-1)for acetaldehyde.The heterogeneous interface of the composite facilitated efficient charge separation,while NiS provided abundant sites for proton reduction,thereby promoting the overall dual-functional photocatalytic activity.Density functional theory calculations further reveal that both Ni doping and NiS loading can reduce the reaction energy barrier of ethanol oxidation of free radicals,and NiS/Ni-CdSNS composite materials exhibit stronger ethanol C-H activation ability to generate key intermediate·CH(OH)CH_(3)on the surface.This work serves as a valuable guide for the rational design of efficient dual functional photocatalytic systems that combine H_(2)evolution with the selective conversion of organic compounds into high-value chemicals.
基金supported by the open research fund of Songshan Lake Materials Laboratory (2022SLABFN26)the National Natural Science Foundation of China (21773024)+1 种基金the Sichuan Science and Technology program (2020YJ0324,2020YJ0262)the Reformation and Development Funds for Local Region Universities from China Government in 2020 (ZCKJ 2020-11)。
文摘The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispersed Nb N quantum dots anchored on nitrogen-doped hollow carbon nanorods(NbN@NHCR)are elaborately developed as efficient Li PSs immobilizer and Li stabilizer for high-performance Li-S full batteries.Density functional theory(DFT)calculations and experimental characterizations demonstrate that the sulfiphilic and lithiophilic NbN@NHCR hybrid can not only efficiently immobilize the soluble Li PSs and facilitate diffusion-conversion kinetics for alleviating the shuttling effect,but also homogenize the distribution of Li+ions and regulate uniform Li deposition for suppressing Li-dendrite growth.As a result,the assembled Li-S full batteries(NbN@NHCR-S||Nb N@NHCR-Li)deliver excellent long-term cycling stability with a low decay rate of 0.031%per cycle over 1000 cycles at high rate of 2 C.Even at a high S loading of 5.8 mg cm^(-2)and a low electrolyte/sulfur ratio of 5.2μL mg^(-1),a large areal capacity of 6.2 mA h cm^(-2)can be achieved in Li-S pouch cell at 0.1 C.This study provides a new perspective via designing a dual-functional sulfiphilic and lithiophilic hybrid to address serious issues of the shuttle effect of S cathode and dendrite growth of Li anode.
基金This work was financially supported by the Australian Research Council(ARC)Discovery Projects(DP210103266 and DPI 701048343)the Griffith University Ph.D.Scholarships.
文摘Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large volume change and active material loss in lithium-ion batteries during prolonged cycles. Herein, a hydrophilic polymer poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was explored as a dual-functional aqueous binder for the preparation of high-performance silicon anode and sulfur cathode. Benefiting from the dual functions of PMVEMA, i.e., the excellent dispersion ability and strong binding forces, the as-prepared electrodes exhibit improved capacity, rate capability and long-term cycling performance. In particular, the as-prepared Si electrode delivers a high initial discharge capacity of 1346.5 mAh g^(−1) at a high rate of 8.4 A/g and maintains 834.5 mAh g^(−1) after 300 cycles at 4.2 A/g, while the as-prepared S cathode exhibits enhanced cycling performance with high remaining discharge capacities of 663.4 mAh g^(−1) after 100 cycles at 0.2 C and 487.07 mAh g^(−1) after 300 cycles at 1 C, respectively. These encouraging results suggest that PMVEMA could be a universal binder to facilitate the green manufacture of both anode and cathode for high-capacity energy storage systems.
基金financially supported by the National Science Foundation of China(Nos.52203314,52071226 and 51872193)the Natural Science Foundations of Jiangsu Province(No.BK20210847)+1 种基金Jiangsu Key Laboratory for Biomass Energy and Material(No.JSBEM-S-201805)the Natural Science Foundations of the Jiangsu Higher Education Institutions of China(No.21KJB430042)。
文摘Hydrogen,as a green and clean next-generation fuel,is a key to achieving the goal of carbon neutrality.Constructing an electrocatalyst with bifunctional hydrogen evolution and oxygen evolution activity in the same electrolyte is a key technology for producing hydrogen via water splitting.Herein,a bimetallic active site catalyst,which possessed an edge-riched MoS_(2)nanoflakes array vertically growing on cubic CoS_(2),forming a nuclear-shell heterogeneous configuration,termed CSC-Mo S_(2)@Co S_(2).was reported The optimal CSC-Mo S_(2)@Co S_(2)-24 possessed good dualfunctional electrocatalytic activity(hydrogen evolution(HER),10 m A·cm^(-2)@241.5 m V and oxygen evolution(OER),10 m A·cm^(-2)@350 m V).Especially,CSC-Mo S_(2)@CoS_(2)-24 exhibited an extremely high mass activity for HER,and only required an overpotential of~550 m V when reaching a large current density of 1422 m A·mg^(-1),which was20.6-fold that of the bulk CoS_(2)(69 m A·mg^(-1)),as well as exhibiting stability of up to 100 h.The good electrocatalytic performance was attributed to the nuclear-shell heterostructure of Mo S_(2)@CoS_(2)hybrid could bring critical synergies,improving efficient mass transfer and electron transfer processes between Co S_(2)and Mo S_(2),which collaboratively promoted the electrocatalytic kinetics.It is foreseeable that the method proposed in this work will have guiding value for the preparation of dual-functional electrocatalysts with multi-interface heterostructures by assembling layered sulfides on cubic sulfides.
基金supported by the National Natural Science Foundation of China(Nos.51901222,41827805)the CAS Pioneer Hundred Talents Program,and the Shandong Province Higher Educational Program for Introduction and Cultivation of Young Innovative Talents(2021).
文摘Novel C-BiOCl/Bi_(2)S_(3) composites are prepared by hydrothermal C doping in BiOCl and in-situ growth of Bi_(2)S_(3) on C-BiOCl.Compared with BiOCl,C-BiOCl has a larger exposed surface area and can effectively absorb visible light.The construction of a heterojunction in C-BiOCl/Bi_(2)S_(3) further promotes the separation and transfer of photogenerated carriers.With improved photoelectric properties,the optimized 5C-BiOCl/5Bi_(2)S_(3) is applied as a dual-functional composite for photoelectrochemical(PEC)detection and photocatalytic(PC)reduction of Cr(VI).The 5C-BiOCl/5Bi_(2)S_(3) shows a linear range of 0.02-80μM for PEC cathodic detection of Cr(VI)with a detection limit of 0.01628μM.Additionally,99.5%of Cr(VI)can be removed via absorption and PC reduction by 5C-BiOCl/5Bi_(2)S_(3),with the reduction rate constant(k)336 times higher than that of BiOCl.
基金supported by The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technologythe National Natural Science Foundation of China (NSFC, 52070006)。
文摘The design and synthesis of non-precious metal dual-functional electrocatalysts through the modulation of electronic structure are important for the development of renewable hydrogen energy.Herein,MnS_(2)/MnO_(2)-CC heterostructure dual-functional catalysts with ultrathin nanosheets were prepared by a twostep electrodeposition method for efficient acidic hydrogen evolution reaction(HER) and degradation of organic wastewater(such as methylene blue(MB)).The electronic structure of Mn atoms at the MnS_(2)/MnO_(2)-CC heterostructure interface is reconfigured under the joint action of S and O atoms.Theoretical calculations show that the Mn d-band electron distribution in MnS_(2)/MnO_(2)-CC catalyst has higher occupied states near the Fermi level compared to the MnO_(2) and MnS_(2) catalysts,which indicates that MnS_(2)/MnO_(2)-CC catalyst has better electron transfer capability and catalytic activity.The MnS_(2)/MnO_(2)-CC catalysts require overpotential of only 66 and 116 mV to reach current density of 10 and 100 mA cm^(-2)in MB/H_(2)SO_(4) media.The MnS_(2)/MnO_(2)-CC catalyst also has a low Tafel slope(26.72 mV dec^(-1)) and excellent stability(the performance does not decay after 20 h of testing).In addition,the MB removal efficiency of the MnS_(2)/MnO_(2)-CC catalyst with a better kinetic rate(0.0226) can reach 97.76%,which is much higher than that of the MnO_(x)-CC catalyst(72.10%).This strategy provides a new way to develop efficient and stable non-precious metal dual-functional electrocatalysts for HER and organic wastewater degradation.
基金supported by the National Key Scientific Instrument and Equipment Development Project of China(No.21627809)the National Natural Science Foundation of China(No.21777056)+2 种基金the Natural Science Foundation of Shandong Province(China)(Nos.ZR2020MB091 and ZR2020MB037)the Youth Innovative Talents Recruitment and Cultivation Program of Shandong Higher Education(China)the Jinan Scientifie Research Leader Workshop Project(China)(No.2018GXRC021).
文摘Achieving hydrogen production and simultaneous decomposition of organic pollutants through dual-functional photocatalytic reactions has received increasing attention due to the environmentally friendly and cost-effective characteristics of this approach.In this work,an urchin-like oxygen-doped MoS_(2)/ZnIn_(2)S_(4)(OMS/ZIS)composite was fabricated for the first time using a simple solvothermal method.The unique microstructure with abundant active sites and fast charge transfer channels further shortened the charge migration distance and compressed carrier recombination.The obtained composite exhibited an efficient H2 evolution reaction rate of 12.8 mmol/g/h under visible light,which was nearly times higher than pristine ZnIn_(2)S_(4),and the apparent quantum efficiency was 14.9%(420 nm).The results of the simultaneous photocatalytic H2 evolution and organic pollutant decomposition test were satisfactory,resulting in decomposition efficiencies of resorcinol,tetracycline,and bisphenol A that reached 41.5%,63.5%,and 53.0%after 4 h,respectively,and the highest H2 evolution rate was 672.7 umol/g/h for bisphenol A.Furthermore,natural organic matter(NOM)abundantly found in actual water was adopted as an electron donor for H production under simulated sunlight irradiation,indicating the promising practicability of simultaneous hydrogen evolution and NOM decomposition.Moreover,the mechanisms of the dual-purpose photocatalytic reactions,as well as the synergistic effect between the molecular structures of the organic pollutants and the corresponding adsorption behavior on the photocatalyst surface were illustrated in detail.These obtained results may serve as an inspiration for the rational design of highly efficient,dual-functional photocatalysts in the future.
基金the National Natural Science Foun-dation of China(No.52001280)the China Postdoctoral Science Foundation(No.2020M682339).
文摘Marine biofouling is a worldwide challenge that needs to be solved urgently.Poly(dimethylsiloxane)(PDMS)-based fouling release coatings with low surface free energy(SFE)could effectively inhibit bio-fouling.Nevertheless,their poor mechanical durability,adhesive strength,and antifouling performance under static conditions significantly limit their applications.Herein,a novel mechanically robust Al_(2)O_(3)-PDMS-Cu composite coating with strong adhesive strength and remarkable antifouling performance was developed.The Al_(2)O_(3)-PDMS-Cu coating loaded with a small amount of Cu was fabricated by infiltrating PDMS into plasma-sprayed micro/nano-scaled porous Al_(2)O_(3)-Cu coating.Results showed that the fabri-cation of this Al_(2)O_(3)-PDMS-Cu coating did not alter the surface hydrophobicity and SFE of PDMS signif-icantly,thus presenting little influence on its inherent fouling release property.After rigorous abrasion test,the Al_(2)O_(3)-PDMS-Cu coating presented remarkably improved surface hydrophobicity due to the ex-posure of micro/nano structure,rather than falling offas that of PDMS coating.The combination of excel-lent abrasion resistance and one order of magnitude higher adhesive strength and hardness than PDMS coating contributed to the outstanding mechanical robustness of Al_(2)O_(3)-PDMS-Cu coating.Additionally,the antifouling assays against marine bacteria adhesion(95%reduction rate for Escherichia coli.(E.coli))and algae attachment(96%and 94%reduction rates for Chlorella and Phaeodactylum tricornutum(P.tricor-nutum),respectively after 21 days of incubation)demonstrated the superior antifouling performance of the Al_(2)O_(3)-PDMS-Cu coating.Thus,a high-performance Al_(2)O_(3)-PDMS-Cu antifouling coating with excellent mechanical robustness and long-term antifouling performance was achieved via the combination of me-chanical durability of Al_(2)O_(3)skeleton and the dual-functional antifouling strategy,i.e.,the fouling release property of PDMS and fouling resistance of Cu.
基金financially supported by the National Natural Science Foundation of China (Nos.52070194,52073309,51902347,and 51908555)the Natural Science Foundation of Hunan Province (Nos.2022JJ20069 and 2020JJ5741).
文摘The intrinsic poor electrical conductivity,severe dissolution of K x S y intermediates,and inferior conversion reaction reversibility extremely impede the practical application of the transition-metal chalcogenides(TMDs)anode for potassium-ion batteries(PIBs).Herein,a rationally designed Cu_(9)S_(5)/MoS_(2)/C heterostruc-ture hollow nanocage was synthesized with assistance from metal-organic frameworks(MOFs)precursor.During the K-storage process,the homogeneously distributed the sulfiphilic nature of Cu 0 reaction prod-uct could act as a dual-functional catalyst,not only facilitating the rapid charge transfer but also effec-tively anchoring(K x S y)polysulfides,thus boosting K-storage reactions reversibility during the conversion reaction process.When applied as an anode for PIBs,the as-prepared heterostructure exhibits excellent reversible capacity and long cycle lifespan(350.5 mAh g^(-1)at 0.1 A g^(-1)and 0.04%per cycle capacity de-cay at 1 A g^(-1)after 1000 cycles).Additionally,the potassium storage mechanism is distinctly revealed by in-situ characterizations.The nanoarchitecture designing strategy for the advanced electrode in this work could provide vital guidance for relevant energy storage materials.
基金supports provided by the National Natural Science Foundation of China(Nos.U21A2077 and 21971145)the Taishan Scholar Project Foundation of Shandong Province(No.ts20190908)+1 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2021ZD05 and ZR2019MB024)Anhui Kemi Machinery Technology Co.,Ltd for providing a Teflonlined stainless steel autoclave.
文摘Lithium-sulfur(Li-S)batteries have been widely investigated attributed to their advantages of high energy density and cost effectiveness.However,it is still limited by the uncontrolled shuttle effect of the sulfur cathode and the promiscuous dendrite growth over the lithium anode.To handle the above issues,the highly conductive CoTe catalyst is precisely loaded onto nitrogendoped nanotube and graphene-like carbon(CoTe NCGs),which is employed as a bi-functionally integrated host.On the lithium anode,the CoTe NCGs with excellent lithiophilic property effectively regulate the uniform deposition of lithium and achieve the effect of suppressing the disorderly growth of lithium dendrites.On the sulfur cathode,the electrochemical conversion of lithium polysulfides(LiPSs)is catalyzed to mitigate the notorious shuttle effect.In view of the bifunctionality of CoTe NCGs,the assembled full cell can be steadily stable even for 800 cycles at a high rate of 2 C,and the capacity decay rate is only 0.05%per cycle.The areal capacity of 6.0 mAh·cm^(−2) is well retained after 50 cycles under the conditions of high sulfur loading,poor electrolyte(a low electrolyte-to-sulfur ratio,E/S=4.2),and low negative to positive capacity ratio(N/P=1.6:1).
基金supported by Jiangxi Province Key Laboratory of Synthetic Chemistry(JXSC202004)the Foundation of Jiangxi Educational Committee(GJJ200731)the Natural Science Foundation of Jiangxi Province of China(20192BAB213001)。
文摘The rational fabrication of photocatalysts with dual functions upon visible light, such as photocatalytic radioactive U(Ⅵ)reduction and value-added organic oxidation, is highly desirable but remains huge challenge. Here, we couple the photocatalytic U(Ⅵ) reduction with the oxidative organic synthesis to one system using novel extended π-conjugated framework(Cu@ThTCPP) without the expense of sacrificial reagents. Noticeably, the as-prepared Cu@Th-TCPP linked by tetratopic tetrakis(4-carboxyphenyl)porphyrin(TCPP) ligand and unique Th(μ-O)(HCOO)(HO)secondary building unit(SBU) exhibits significantly enhanced activity when the photocatalytic U(Ⅵ) reduction and thioanisole oxidation were integrated to one system.Further experimental characterizations demonstrate that the highly conjugated framework of Cu@Th-TCPP is good for the charge transfer and separation, while incorporating Cusite further accelerates the charge-carrier dynamics, thus giving rise to the dual-functional property. Apparently, this strategy conforms to atomic economy, opens a new horizon to address radioactive environmental pollution in natural water systems and soils, and simultaneously produces valuable chemicals.
基金supported by the funding from the Strategy Priority Research Program of Chinese Academy of Science (Grant No. XDA17020404)the DICP&QIBEBT (DICP&QIBEBT UN201702)+2 种基金the R&D Projects in Key Areas of Guangdong Province (2019B090908001)Science and Technology Innovation Foundation of Dalian (2018J11CY020)the Defense Industrial Technology Development Program (JCKY2018130C107)。
文摘To anchor the polysulfide and enhance the conversion kinetics of polysulfide to disulfide/sulfide is critical for improving the performance of lithium-sulfur battery.For this purpose,the graphene-supported tin(Ⅳ) phosphate(Sn(HPO_4)_2·H_2 O,SnP) composites(SnP-G) are employed as the novel sulfur hosts in this work.When compared to the graphene-sulfur and carbon-sulfur composites,the SnP-G-sulfur composites exhibit much better cycling performance at 1.0 C over 800 cycles.Meanwhile,the pouch cell fabricated with the SnP-G-sulfur cathodes also exhibits excellent performance with an initial capacity of1266.6 mAh g^(-1)(S) and capacity retention of 76.9% after 100 cycles at 0.1 C.The adsorption tests,density functional theory(DFT) calculations in combination with physical cha racterizations and electrochemical measurements provide insights into the mechanism of capture-accelerated conversion mechanism of polysulfide at the surface of SnP.DFT calculations indicate that the Li-O bond formed between Li atom(from Li_2 S_n,n=1,2,4,6,8) and O atom(from PO_3-OH in SnP) is the main reason for the strong interactions between Li_2 S_n and SnP.As a result,SnP can effectively restrain the shuttle effect and improving the cycling performance of Li-S cell.In addition,by employing the climbing-image nudged elastic band(ciNEB) methods,the energy barrier for lithium sulfide decomposition(charging reaction) on SnP is proved to decrease significantly compared to that on graphene.It can be concluded that SnP is an effective sulfur hosts acting as dual-functional accelerators for the conversion reactions of polysulfude to sulfide(discharging reaction) as well as polysulfide to sulfur(charging reaction).
文摘Nanoparticles have been widely explored for combined therapeutic and diagnostic applications. For example, lipid-based nanoparticles have been used to encapsulate multiple types of agents and achieve multi-functions. Herein, we enabled a co-delivery of mRNA molecules and superparamagnetic iron oxide nanoparticles (SPIONs) by using an amino-ester lipid-like nanomaterial. An orthogonal experimental design was used to identify the optimal formulation. The optimal formulation, MPA-Ab-8 LLNs, not only showed high encapsulation of both mRNA and SPIONs, but also increased the r2 relaxivity of SPIONs by more than 1.5-fold in vitro. MPA-Ab-8 LLNs effectively delivered mRNA and SPIONs into cells, and consequently induced high protein expression as well as strong MRI contrast. Consistent herewith, we observed both mRNA-mediated protein expression and an evident negative contrast enhancement of MRI signal in mice. In conclusion, amino-ester nanomaterials demonstrate great potential as delivery vehicles for theranostic applications.
基金National Natural Science Foundation of China,Grant/Award Numbers:21875253,51872048,52073061Natural Science Foundation of Fujian Province,Grant/Award Numbers:2021J01430167,2021J02020+2 种基金CAS-Commonwealth Scientific and Industrial Research Organization(CSIRO)Joint Research Projects,Grant/Award Number:121835KYSB20200039Scientific Research and Equipment Development Project of CAS,Grant/Award Number:YJKYYQ20190007Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy,Grant/Award Number:YLU-DNL Fund 2021011。
文摘Sodium-tellurium(Na-Te)battery,thanks to high theoretical capacity and abundant sodium source,has been envisaged as one promising battery technology,its practical application yet faces daunting challenges regarding how to mitigate the critical issues of uncontrollable dendrites growth at Na anode and polytellurides shuttling effect at Te cathode.We here report an elaborative design for fabrication of microsphere skeleton nanohybrids with three-dimensional(3D)hierarchical porous carbon loading CeO_(2)quantum dots(CeO_(2)-QDs/HPC),which feature highly favorable properties of sodiophilic and catalysis for hosting sodium and tellurium,respectively.The systematic investigations coupling with first-principle calculations demonstrate the CeO_(2)-QDs/HPC not only offers favorable structure and abundant electrocatalytic sites for facilitating interconversion between Te and NaxTe as a cathode host,but also can function as dendrite inhibitor anode host for reversible sodium electro-plating/deposition.Such Na-Te battery exhibits admiring electrochemical performance with an impressive specific capacity of 392 mAh g1,a long cycling stability over 1000 cycles,as well as remarkably high energy density of 192 Wh kg1 based on the total mass of anode and cathode.Such proof-of-concept bifunctional host design for active electrode materials can render a new insight and direction to the development of high-performance Na-Te batteries.
基金the National Natural Science Foundation of China(Grant No.62001444)the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ20F010009)+1 种基金the Basic Public Welfare Research Project of Zhejiang Province,China(Grant No.LGF19F010003)the State Key Laboratory of Crystal Materials,Shandong University,China(Grant No.KF1909)。
文摘The terahertz technology has attracted considerable attention because of its potential applications in various fields.However,the research of functional devices,including polarization converters,remains a major demand for practical applications.In this work,a reflective dual-functional terahertz metadevice is presented,which combines two different polarization conversions through using a switchable metasurface.Different functions can be achieved because of the insulator-to-metal transition of vanadium dioxide(VO_(2)).At room temperature,the metadevice can be regarded as a linear-to-linear polarization convertor containing a gold circular split-ring resonator(CSRR),first polyimide(PI)spacer,continuous VO_(2) film,second PI spacer,and gold substrate.The converter possesses a polarization conversion ratio higher than 0.9 and a bandwidth ratio of 81%in a range from 0.912 THz to 2.146 THz.When the temperature is above the insulator-to-metal transition temperature(approximately 68℃)and VO_(2) becomes a metal,the metasurface transforms into a wideband linear-to-circular polarization converter composed of the gold CSRR,first PI layer,and continuous VO_(2) film.The ellipticity is close to-1,while the axis ratio is lower than 3 dB in a range of 1.07 THz-1.67 THz.The metadevice also achieves a large angle tolerance and large manufacturing tolerance.