A long-/long-wave dual-color detector with N-M-π-B-π-M-N structure was developed based on a type-Ⅱ InAs/GaSb superlattice. The saturated responsivity was achieved under low bias voltage for both channels. The devic...A long-/long-wave dual-color detector with N-M-π-B-π-M-N structure was developed based on a type-Ⅱ InAs/GaSb superlattice. The saturated responsivity was achieved under low bias voltage for both channels. The device could be operated as a single detector for sequential detection and showed high quantum efficiencies. The peak quantum efficiencies of long-wavelength infrared band-1(blue channel) and long-wavelength infrared band-2(red channel) were 44% at 6.3 μm under 20 mV and 57% at 9.1 μm under-60 mV, respectively. The optical performance for each channel was achieved using a 2 μm thickness absorber. Due to the high QE, the specific detectivities of the blue and red channels reached5.0×10^(11) cm·Hz^(1/2)/W at 6.8 μm and 3.1×10^(11) cm·Hz1^(1/2)/W at 9.1 μm, respectively, at 77 K.展开更多
In this paper, a novel motion detector is proposed to perceive the weak changes in a image sequence. This is inspired by the mechanism of fixational eye movement and dynamics of vertebrate’s cortex. We realized respe...In this paper, a novel motion detector is proposed to perceive the weak changes in a image sequence. This is inspired by the mechanism of fixational eye movement and dynamics of vertebrate’s cortex. We realized respectively an artificial model of visual attention selection, called dual-probe adaptive model (DPAM), and an active tremor operation (ATO) approach. It is found that between them there exists a resonance phenomenon. The phenomenon is enhanced when the ATO and the DPAM are in-phase and is suppressed when they are anti-phase.?Based on this, we construct a novel motion detector combined by the ATO and the DPAM to resonate with the motion direction. This allows capturing moving edges even in the image sequences with lighting change and noisy background. Simulation and Experimental results demonstrate the effectiveness.展开更多
An ultraviolet-infrared dual-color detector is proposed and realized based on the vertical integration of single-layer graphene and a 4 H-SiC layer by semiconductor micro-fabrication technology. The spectral response ...An ultraviolet-infrared dual-color detector is proposed and realized based on the vertical integration of single-layer graphene and a 4 H-SiC layer by semiconductor micro-fabrication technology. The spectral response characteristics of the detector are analyzed. The ultraviolet response range is 208—356 nm with a responsivity larger than 0.4 mA/W and the infrared response range is 1.016—1.17 μm with a responsivity larger than 0.4 mA/W at room temperature and 5 V bias voltage. The peak responsivity of the graphene in the ultraviolet-C band at 232 nm is 0.73 mA/W and in the near infrared band at 1.148 μm is 0.64 mA/W. The peak responsivity of SiC layer in the ultraviolet-B band at 312 nm is 2.27 mA/W. Besides, the responsivity increases with the bias voltage.展开更多
基金supported by the National Key Technology R&D Program of China(Grant Nos.2018YFA0209104 and 2016YFB0402403)
文摘A long-/long-wave dual-color detector with N-M-π-B-π-M-N structure was developed based on a type-Ⅱ InAs/GaSb superlattice. The saturated responsivity was achieved under low bias voltage for both channels. The device could be operated as a single detector for sequential detection and showed high quantum efficiencies. The peak quantum efficiencies of long-wavelength infrared band-1(blue channel) and long-wavelength infrared band-2(red channel) were 44% at 6.3 μm under 20 mV and 57% at 9.1 μm under-60 mV, respectively. The optical performance for each channel was achieved using a 2 μm thickness absorber. Due to the high QE, the specific detectivities of the blue and red channels reached5.0×10^(11) cm·Hz^(1/2)/W at 6.8 μm and 3.1×10^(11) cm·Hz1^(1/2)/W at 9.1 μm, respectively, at 77 K.
文摘In this paper, a novel motion detector is proposed to perceive the weak changes in a image sequence. This is inspired by the mechanism of fixational eye movement and dynamics of vertebrate’s cortex. We realized respectively an artificial model of visual attention selection, called dual-probe adaptive model (DPAM), and an active tremor operation (ATO) approach. It is found that between them there exists a resonance phenomenon. The phenomenon is enhanced when the ATO and the DPAM are in-phase and is suppressed when they are anti-phase.?Based on this, we construct a novel motion detector combined by the ATO and the DPAM to resonate with the motion direction. This allows capturing moving edges even in the image sequences with lighting change and noisy background. Simulation and Experimental results demonstrate the effectiveness.
基金supported by the National Natural Science Foundation of China(No.61804166)
文摘An ultraviolet-infrared dual-color detector is proposed and realized based on the vertical integration of single-layer graphene and a 4 H-SiC layer by semiconductor micro-fabrication technology. The spectral response characteristics of the detector are analyzed. The ultraviolet response range is 208—356 nm with a responsivity larger than 0.4 mA/W and the infrared response range is 1.016—1.17 μm with a responsivity larger than 0.4 mA/W at room temperature and 5 V bias voltage. The peak responsivity of the graphene in the ultraviolet-C band at 232 nm is 0.73 mA/W and in the near infrared band at 1.148 μm is 0.64 mA/W. The peak responsivity of SiC layer in the ultraviolet-B band at 312 nm is 2.27 mA/W. Besides, the responsivity increases with the bias voltage.