Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and...Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and production in the hot dry rocks of the Gonghe Basin,Qinghai Province,NW China.Through multi-well connectivity experiments,the spatial distribution characteristics of the natural fracture system in the rock samples and the connectivity between fracture and wellbore were clarified.The injection and production wells were selected to conduct the experiments,namely one injection well and two production wells,one injection well and one production well.The variation of several physical parameters in the production well was analyzed,such as flow rate,temperature,heat recovery rate and fluid recovery.The results show that under the combination of thermal shock and injection pressure,the fracture conductivity was enhanced,and the production temperature showed a downward trend.The larger the flow rate,the faster the decrease.When the local closed area of the fracture was gradually activated,new heat transfer areas were generated,resulting in a lower rate of increase or decrease in the mining temperature.The heat recovery rate was mainly controlled by the extraction flow rate and the temperature difference between injection and production fluid.As the conductivity of the leak-off channel increased,the fluid recovery of the production well rapidly decreased.The influence mechanisms of dominant channels and fluid leak-off on thermal recovery performance are different.The former limits the heat exchange area,while the latter affects the flow rate of the produced fluid.Both of them are important factors affecting the long-term and efficient development of hot dry rock.展开更多
Producing complex fracture networks in a safe way plays a critical role in the hot dry rock (HDR) geothermal energy exploitation. However, conventional hydraulic fracturing (HF) generally produces high breakdown press...Producing complex fracture networks in a safe way plays a critical role in the hot dry rock (HDR) geothermal energy exploitation. However, conventional hydraulic fracturing (HF) generally produces high breakdown pressure and results only in single main fracture morphology. Furthermore, HF has also other problems such as the increased risk of seismic events and consuption of large amount of water. In this work, a new stimulation method based on cyclic soft stimulation (CSS) and liquid nitrogen (LN2) fracturing, known as cyclic LN2 fracturing is explored, which we believe has the potential to solve the above issues related to HF. The fracturing performances including breakdown pressure and fracture morphology on granites under true-triaxial stresses are investigated and compared with cyclic water fracturing. Cryo-scanning electron microscopy (Cryo-SEM) tests and X-ray computed tomography (CT) scanning tests were used for quantitative characterization of fracture parameters and to evaluate the cyclic LN2 fracturing performances. The results demonstrate that the cyclic LN2 fracturing results in reduced breakdown pressure, with between 21% and 67% lower pressure compared with using cyclic water fracturing. Cyclic LN2 fracturing tends to produce more complex and branched fractures, whereas cyclic water fracturing usually produces a single main fracture under a low number of cycles and pressure levels. Thermally-induced fractures mostly occur around the interfaces of different particles. This study shows the potential benefits of cyclic LN2 fracturing on HDR. It is expected to provide theoretical guidance for the cyclic LN2 fracturing application in HDR reservoirs.展开更多
It is more difficult for a hot dry rock to form a fracture network system than shale due to its special lithology, physical and mechanical properties under high temperature. The essential characteristics, rock mechani...It is more difficult for a hot dry rock to form a fracture network system than shale due to its special lithology, physical and mechanical properties under high temperature. The essential characteristics, rock mechanics and in-situ stress characteristics of a hot rock mass have been systematically studied by means of laboratory tests and true tri-axial physical simulation. The fracture initiation and propagation characteristics under different geological and engineering conditions are physically simulated, and the main controlling factors for the formation of a complex fracture network are revealed. The technology of low displacement for enhancing thermal cracking, gel fluid for expanding fracture and variable displacement cyclic injection for increasing a fracture network has been applied in the field, and good results have been achieved. Microseismic monitoring results demonstrate that complex fractures were formed in the field test, and the stimulation volume for heat exchanging reaches more than 3 million cubic meters. The research results play an important role in the stimulation technology of an enhanced geothermal system(EGS) and realize a breakthrough for power generation.展开更多
基金Supported by the National Natural Science Foundation of China(52192622,52304003).
文摘Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and production in the hot dry rocks of the Gonghe Basin,Qinghai Province,NW China.Through multi-well connectivity experiments,the spatial distribution characteristics of the natural fracture system in the rock samples and the connectivity between fracture and wellbore were clarified.The injection and production wells were selected to conduct the experiments,namely one injection well and two production wells,one injection well and one production well.The variation of several physical parameters in the production well was analyzed,such as flow rate,temperature,heat recovery rate and fluid recovery.The results show that under the combination of thermal shock and injection pressure,the fracture conductivity was enhanced,and the production temperature showed a downward trend.The larger the flow rate,the faster the decrease.When the local closed area of the fracture was gradually activated,new heat transfer areas were generated,resulting in a lower rate of increase or decrease in the mining temperature.The heat recovery rate was mainly controlled by the extraction flow rate and the temperature difference between injection and production fluid.As the conductivity of the leak-off channel increased,the fluid recovery of the production well rapidly decreased.The influence mechanisms of dominant channels and fluid leak-off on thermal recovery performance are different.The former limits the heat exchange area,while the latter affects the flow rate of the produced fluid.Both of them are important factors affecting the long-term and efficient development of hot dry rock.
基金supported by the Youth Program of the National Natural Science Foundation of China(52004299)Major Project of the National Natural Science Foundation of China(52192621)+2 种基金the National Science Foundation for National R&D Program for Major Research Instruments of China(51827804)Beijing Outstanding Young Scientist Program(BJJWZYJH01201911414038)the National Science Foundation for Distinguished Young Scholars of China(51725404).
文摘Producing complex fracture networks in a safe way plays a critical role in the hot dry rock (HDR) geothermal energy exploitation. However, conventional hydraulic fracturing (HF) generally produces high breakdown pressure and results only in single main fracture morphology. Furthermore, HF has also other problems such as the increased risk of seismic events and consuption of large amount of water. In this work, a new stimulation method based on cyclic soft stimulation (CSS) and liquid nitrogen (LN2) fracturing, known as cyclic LN2 fracturing is explored, which we believe has the potential to solve the above issues related to HF. The fracturing performances including breakdown pressure and fracture morphology on granites under true-triaxial stresses are investigated and compared with cyclic water fracturing. Cryo-scanning electron microscopy (Cryo-SEM) tests and X-ray computed tomography (CT) scanning tests were used for quantitative characterization of fracture parameters and to evaluate the cyclic LN2 fracturing performances. The results demonstrate that the cyclic LN2 fracturing results in reduced breakdown pressure, with between 21% and 67% lower pressure compared with using cyclic water fracturing. Cyclic LN2 fracturing tends to produce more complex and branched fractures, whereas cyclic water fracturing usually produces a single main fracture under a low number of cycles and pressure levels. Thermally-induced fractures mostly occur around the interfaces of different particles. This study shows the potential benefits of cyclic LN2 fracturing on HDR. It is expected to provide theoretical guidance for the cyclic LN2 fracturing application in HDR reservoirs.
基金financially supported by the National Key R&D Program of China(Grant No.2018YFB1501802)。
文摘It is more difficult for a hot dry rock to form a fracture network system than shale due to its special lithology, physical and mechanical properties under high temperature. The essential characteristics, rock mechanics and in-situ stress characteristics of a hot rock mass have been systematically studied by means of laboratory tests and true tri-axial physical simulation. The fracture initiation and propagation characteristics under different geological and engineering conditions are physically simulated, and the main controlling factors for the formation of a complex fracture network are revealed. The technology of low displacement for enhancing thermal cracking, gel fluid for expanding fracture and variable displacement cyclic injection for increasing a fracture network has been applied in the field, and good results have been achieved. Microseismic monitoring results demonstrate that complex fractures were formed in the field test, and the stimulation volume for heat exchanging reaches more than 3 million cubic meters. The research results play an important role in the stimulation technology of an enhanced geothermal system(EGS) and realize a breakthrough for power generation.