SAPO-34 catalyst with plate-like morphology was designed and synthesized for the first time, by the dry gel conversion method using cheap triethylamine as a structure-directing agent assisted with seed suspension cont...SAPO-34 catalyst with plate-like morphology was designed and synthesized for the first time, by the dry gel conversion method using cheap triethylamine as a structure-directing agent assisted with seed suspension containing nanosheet-like SAPO-34 seed. The latter played an important role in formation of SAPO-34 (CHA-type) with plate-like morphology. In addition, the yield of the product in the synthesis system containing seed suspension reached 97%, 15% higher than that obtained in the corre- sponding synthesis system without the seed suspension. Meanwhile, the plate-like SAPO-34 catalysts synthesized by this method exhibited higher selectivity to light olefins and longer lifetime in methanol-to-olefins (MTO) reaction than the traditional cubic SAPO-34 catalyst. This work provides a new technical route for green and efficient synthesis of SAPO-34 catalysts with improved MTO performance.展开更多
相对于传统的水热合成法,干胶法(dry gel conversion,DGC)合成分子筛具有产量高、废液量少等优势。本文综述了近十年来DGC合成分子筛的研究进展。以水为线索,总结了外加水和固有水(指原料干胶所含的水)在DGC中对分子筛的生长、晶相的转...相对于传统的水热合成法,干胶法(dry gel conversion,DGC)合成分子筛具有产量高、废液量少等优势。本文综述了近十年来DGC合成分子筛的研究进展。以水为线索,总结了外加水和固有水(指原料干胶所含的水)在DGC中对分子筛的生长、晶相的转换与物化性质的影响,论述了在DGC条件下分子筛的生长过程和晶化机理,介绍了DGC在介孔-微孔复合分子筛、分子筛膜、单块材料等新型分子筛材料合成中的一些实例。展开更多
文摘SAPO-34 catalyst with plate-like morphology was designed and synthesized for the first time, by the dry gel conversion method using cheap triethylamine as a structure-directing agent assisted with seed suspension containing nanosheet-like SAPO-34 seed. The latter played an important role in formation of SAPO-34 (CHA-type) with plate-like morphology. In addition, the yield of the product in the synthesis system containing seed suspension reached 97%, 15% higher than that obtained in the corre- sponding synthesis system without the seed suspension. Meanwhile, the plate-like SAPO-34 catalysts synthesized by this method exhibited higher selectivity to light olefins and longer lifetime in methanol-to-olefins (MTO) reaction than the traditional cubic SAPO-34 catalyst. This work provides a new technical route for green and efficient synthesis of SAPO-34 catalysts with improved MTO performance.
文摘相对于传统的水热合成法,干胶法(dry gel conversion,DGC)合成分子筛具有产量高、废液量少等优势。本文综述了近十年来DGC合成分子筛的研究进展。以水为线索,总结了外加水和固有水(指原料干胶所含的水)在DGC中对分子筛的生长、晶相的转换与物化性质的影响,论述了在DGC条件下分子筛的生长过程和晶化机理,介绍了DGC在介孔-微孔复合分子筛、分子筛膜、单块材料等新型分子筛材料合成中的一些实例。