Nowadays days,the chief grounds of automobile accidents are driver fatigue and distractions.With the development of computer vision technology,a cutting-edge system has the potential to spot driver distractions or sle...Nowadays days,the chief grounds of automobile accidents are driver fatigue and distractions.With the development of computer vision technology,a cutting-edge system has the potential to spot driver distractions or sleepiness and alert them,reducing accidents.This paper presents a novel approach to detecting driver tiredness based on eye and mouth movements and object identification that causes a distraction while operating a motor vehicle.Employing the facial landmarks that the camera picks up and sends to classify using a Convolutional Neural Network(CNN)any changes by focusing on the eyes and mouth zone,precision is achieved.One of the tasks that must be performed in the transit system is seat belt detection to lessen accidents caused by sudden stops or high-speed collisions with other cars.A method is put forth to use convolution neural networks to determine whether the motorist is wearing a seat belt when a driver is sleepy,preoccupied,or not wearing their seat belt,this system alerts them with an alarm,and if they don’t wake up by a predetermined time of 3 s threshold,an automatic message is sent to law enforcement agencies.The suggested CNN-based model exhibits greater accuracy with 97%.It can be utilized to develop a system that detects driver attention or sleeps in real-time.展开更多
Today,fatalities,physical injuries,and significant economic losses occur due to car accidents.Among the leading causes of car accidents is drowsiness behind the wheel,which can affect any driver.Drowsiness and sleepin...Today,fatalities,physical injuries,and significant economic losses occur due to car accidents.Among the leading causes of car accidents is drowsiness behind the wheel,which can affect any driver.Drowsiness and sleepiness often have associated indicators that researchers can use to identify and promptly warn drowsy drivers to avoid potential accidents.This paper proposes a spatiotemporal model for monitoring drowsiness visual indicators from videos.This model depends on integrating a 3D convolutional neural network(3D-CNN)and long short-term memory(LSTM).The 3DCNN-LSTM can analyze long sequences by applying the 3D-CNN to extract spatiotemporal features within adjacent frames.The learned features are then used as the input of the LSTM component for modeling high-level temporal features.In addition,we investigate how the training of the proposed model can be affected by changing the position of the batch normalization(BN)layers in the 3D-CNN units.The BN layer is examined in two different placement settings:before the non-linear activation function and after the non-linear activation function.The study was conducted on two publicly available drowsy drivers datasets named 3MDAD and YawDD.3MDAD is mainly composed of two synchronized datasets recorded from the frontal and side views of the drivers.We show that the position of the BN layers increases the convergence speed and reduces overfitting on one dataset but not the other.As a result,the model achieves a test detection accuracy of 96%,93%,and 90%on YawDD,Side-3MDAD,and Front-3MDAD,respectively.展开更多
<p align="justify"> <span style="font-family:Verdana;">Amid the Covid-19 widespread, it has been challenging for educational institutions to conduct online classes, facing multiples cha...<p align="justify"> <span style="font-family:Verdana;">Amid the Covid-19 widespread, it has been challenging for educational institutions to conduct online classes, facing multiples challenges. This paper provides an insight into different approaches in facing those challenges which includes conducting a fair online class for students. It is tough for an instructor to keep track of their students at the same time because it is difficult to screen if any of the understudies within the class are not present, mindful, or drowsing. This paper discusses a possible solution, something new that can offer support to instructors seeing things from a more significant point of view. The solution is a facial analysis computer program that can let instructors know which students are attentive and who is not. There’s a green and red square box for face detection, for which Instructors can watch by seeing a green box on those mindful students conjointly, a red box on those who are not mindful at all. This paper finds that the program can automatically give attendance by analyzing data from face detection. It has other features for which the teacher can also know if any student leaves the class early. In this paper, model design, performance analysis, and online class assistant aspects of the program have been discussed.</span> </p>展开更多
基金Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through Project Number MoE-IF-UJ-22-4100409-1.
文摘Nowadays days,the chief grounds of automobile accidents are driver fatigue and distractions.With the development of computer vision technology,a cutting-edge system has the potential to spot driver distractions or sleepiness and alert them,reducing accidents.This paper presents a novel approach to detecting driver tiredness based on eye and mouth movements and object identification that causes a distraction while operating a motor vehicle.Employing the facial landmarks that the camera picks up and sends to classify using a Convolutional Neural Network(CNN)any changes by focusing on the eyes and mouth zone,precision is achieved.One of the tasks that must be performed in the transit system is seat belt detection to lessen accidents caused by sudden stops or high-speed collisions with other cars.A method is put forth to use convolution neural networks to determine whether the motorist is wearing a seat belt when a driver is sleepy,preoccupied,or not wearing their seat belt,this system alerts them with an alarm,and if they don’t wake up by a predetermined time of 3 s threshold,an automatic message is sent to law enforcement agencies.The suggested CNN-based model exhibits greater accuracy with 97%.It can be utilized to develop a system that detects driver attention or sleeps in real-time.
文摘Today,fatalities,physical injuries,and significant economic losses occur due to car accidents.Among the leading causes of car accidents is drowsiness behind the wheel,which can affect any driver.Drowsiness and sleepiness often have associated indicators that researchers can use to identify and promptly warn drowsy drivers to avoid potential accidents.This paper proposes a spatiotemporal model for monitoring drowsiness visual indicators from videos.This model depends on integrating a 3D convolutional neural network(3D-CNN)and long short-term memory(LSTM).The 3DCNN-LSTM can analyze long sequences by applying the 3D-CNN to extract spatiotemporal features within adjacent frames.The learned features are then used as the input of the LSTM component for modeling high-level temporal features.In addition,we investigate how the training of the proposed model can be affected by changing the position of the batch normalization(BN)layers in the 3D-CNN units.The BN layer is examined in two different placement settings:before the non-linear activation function and after the non-linear activation function.The study was conducted on two publicly available drowsy drivers datasets named 3MDAD and YawDD.3MDAD is mainly composed of two synchronized datasets recorded from the frontal and side views of the drivers.We show that the position of the BN layers increases the convergence speed and reduces overfitting on one dataset but not the other.As a result,the model achieves a test detection accuracy of 96%,93%,and 90%on YawDD,Side-3MDAD,and Front-3MDAD,respectively.
文摘<p align="justify"> <span style="font-family:Verdana;">Amid the Covid-19 widespread, it has been challenging for educational institutions to conduct online classes, facing multiples challenges. This paper provides an insight into different approaches in facing those challenges which includes conducting a fair online class for students. It is tough for an instructor to keep track of their students at the same time because it is difficult to screen if any of the understudies within the class are not present, mindful, or drowsing. This paper discusses a possible solution, something new that can offer support to instructors seeing things from a more significant point of view. The solution is a facial analysis computer program that can let instructors know which students are attentive and who is not. There’s a green and red square box for face detection, for which Instructors can watch by seeing a green box on those mindful students conjointly, a red box on those who are not mindful at all. This paper finds that the program can automatically give attendance by analyzing data from face detection. It has other features for which the teacher can also know if any student leaves the class early. In this paper, model design, performance analysis, and online class assistant aspects of the program have been discussed.</span> </p>