期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GRA-SSA-Elman的隧洞TBM掘进适应性评价 被引量:3
1
作者 赵雪 顾伟红 《隧道建设(中英文)》 CSCD 北大核心 2022年第11期1879-1888,共10页
为准确评价隧洞施工TBM掘进适应性,保障TBM安全、高效施工,提出一种基于灰色关联分析(GRA)与麻雀搜索算法(SSA)优化Elman神经网络的TBM掘进适应性预测模型。首先,从地质条件、掘进参数、不良地质、施工组织4个方面综合考虑,初步选取13... 为准确评价隧洞施工TBM掘进适应性,保障TBM安全、高效施工,提出一种基于灰色关联分析(GRA)与麻雀搜索算法(SSA)优化Elman神经网络的TBM掘进适应性预测模型。首先,从地质条件、掘进参数、不良地质、施工组织4个方面综合考虑,初步选取13个主要影响因素,建立隧洞TBM掘进适应性评价指标体系;然后,利用GRA分析指标与掘进适应性间的关联性,引入SSA优化Elman神经网络,提高模型性能,并采用留一交叉验证法验证模型的准确性及可靠性,使得模型最接近原始数据分布特征;最后,结合北疆水利工程某标段中待测样本对模型预测效果进行验证,同时与Elman、PSO-Elman、BP神经网络模型预测结果及现场实际结果对比分析。结果表明:SSA-Elman模型预测结果与实际工程结果吻合度较高,该模型能够正确、有效地对TBM掘进适应性进行预测评价,且具有合理性和可操作性,可为隧洞TBM适应性评价提供一种新方法。 展开更多
关键词 隧洞施工 TBM掘进适应性 灰色关联分析 麻雀搜索算法 ELMAN神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部