Independent of Indochina extrusion, the South China Sea experienced a process from passive continental rifting to marginal sea drifting. According to the fault patterns in the Beibu Gulf basin and the Pearl River Mout...Independent of Indochina extrusion, the South China Sea experienced a process from passive continental rifting to marginal sea drifting. According to the fault patterns in the Beibu Gulf basin and the Pearl River Mouth basin, the continental rifting and early spreading stage from 32 to 26 Ma were controlled by extensional stress field, which shifted clockwise from southeastward to south southeastward. From 24 Ma on, the sea spread in NW-SE direction and ceased spreading at around 15.5 Ma. Integrated geological information with the assumption that the South China Sea developed along a pre-Cenozoic weakness zone, we did analogue experiments on the South China Sea evolu- tion. Experiments revealed that the pre-existing weakness zone goes roughly along the uplift zone between the present Zhu-1 and Zhu-2 depression. The pre-existing weakness zone is composed of three segments trending NNE, roughly EW and NEE, respectively. The early opening of the South China Sea is accompanied with roughly 15° clockwise rotation, while the SE sub-sea basin opened with SE extension. Tinjar fault was the western boundary of the Nansha block (Dangerous Ground), while Lupar fault was the eastern boundary of the Indochina, NW-trending rift belt known as Zengmu basin developed between above two faults due to block divergent of Indochina from Nansha. In the experiment, transtensional flower structures along NW-trending faults are seen, and slight inversion occurs along some NE-dipping faults. The existence of rigid massifs changed the orientations of some faults and rift belt, and also led to deformation concentrate around the massifs. The rifting and drifting of the South China Sea might be caused by slab pull from the proto South China Sea subducting toward Borneo and/or mantle flow caused by India-Asia collision.展开更多
Estimates of the surface heat budget over drifting ice and open water in the Arctic Ocean are made using eddy correlation and flux-profile methods using data obtained from drifting ice and from the R/V Xuelong in the ...Estimates of the surface heat budget over drifting ice and open water in the Arctic Ocean are made using eddy correlation and flux-profile methods using data obtained from drifting ice and from the R/V Xuelong in the Chinese National Arctic Research Expedition during August 19—24,1999. The results show that the net radiation received by the ice surface is mainly lost through the sensible heat flux and the heat flux due to melting ice, and the latent heat flux making small contribution to the heat balance. However, the heat balance of the open water surface was dominated by the radiative flux whereas the latent and sensible heat fluxes and the oceanic heat flux were greater than those on the sea-ice surface. These results emphasize that thermodynamic processes are quite different between air/open water and air/sea-ice over the Arctic Ocean which is important when considering the effect of sea-air-ice interaction on climate change process dur-ing the summer period.展开更多
Abstract Monthly mean sea ice motion vectors and monthly mean sea level pressure (SLP) for the period of 1979-2006 are investigated to understand the spatial and temporal changes of Arctic sea-ice drift. According t...Abstract Monthly mean sea ice motion vectors and monthly mean sea level pressure (SLP) for the period of 1979-2006 are investigated to understand the spatial and temporal changes of Arctic sea-ice drift. According to the distinct differences in monthly mean ice velocity field as well as in the distribution of SLP, there are four primary types in the Arctic Ocean: Beaufort Gyre+Transpolar Drift, Anticyclonic Drift, Cyclonic Drift and Double Gyre Drift. These four types account for 81% of the total, and reveal distinct seasonal variations. The Cyclonic Drift with a large-scale anticlockwise ice motion pattern trends to prevail in summer while the Anticyclonic Drift with an opposite pattern trends to prevail in winter and spring. The prevailing seasons for the Beaufort Gyre+Transpolar Drift are spring and autumn, while the Double Gyre Drift trends to prevail in winter, especially in Feb- ruary. The annual occurring times of the Anticyclonic Drift and the Cyclonic Drift are closely correlated with the yearly mean Arc- tic Oscillation (AO) index, with a correlation coefficient of -0.54 and 0.54 (both significant with the confident level of 99%), re- spectively. When the AO index stays in a high positive (negative) condition, the sea-ice motion in the Arctic Ocean demonstrates a more anticlockwise (clockwise) drifting pattern as a whole. When the AO index stays in a neutral condition, the sea-ice motion becomes much more complicated and more transitional types trend to take place.展开更多
The Indo-Pacific convergence region is the best target to solve the teo remaining challenges of the plate tectonics theory,i.e.,subduction initiation and the driving force of plate tectonics.Recent studies proposed th...The Indo-Pacific convergence region is the best target to solve the teo remaining challenges of the plate tectonics theory,i.e.,subduction initiation and the driving force of plate tectonics.Recent studies proposed that the Izu-Bonin subduction initiation belongs to spontaneous initiation,which implies that it started from extension,followed by low angle subduction.Numerical geodynamic modeling suggests that the initiation of plate subduction likely occurred along a transform fault,which put the young spreading ridge in direct contact with old oceanic crust.This,however,does not explain the simultaneous subduction initiation in the west Pacific region in the Cenozoic.Namely,the subduction initiations in the Izu-BoninMariana,the Aleutian,and the Tonga-Kermadec trenches are associated with oceanic crusts of different ages,yet they occurred at roughly the same time,suggesting that they were all triggered by a maj or change in the Pacific plate.Moreover,low angle subduction induces compression rather than extension,which requires external compression forces.Given that the famous Hawaiian-Emperor bending occurred roughly at the same time with the onset of westward subductions in the west Pacific,we propose that these Cenozoic subductions were initiated by the steering of the Pacific plate,which are classified as induced initiation.Induced subduction initiation usually occurs in young ocean basins,forming single-track subduction.The closure s of Neo-Tethys Oceans were likely triggered by plume s in the south,forming northward subductions.Interestingly,the Indian plate kept on moving northward more than 50 Ma after the collision between the Indian and Eurasian continents and the break-off of the subducted oceanic slab attached to it.This strongly suggests that slab pull is not the main driving force of plate tectonics,whereas slab sliding is.展开更多
There is a huge demand to develop a method for marine search and rescue(SAR) operators automatically predicting the most probable searching area of the drifting object. This paper presents a novel drifting predictio...There is a huge demand to develop a method for marine search and rescue(SAR) operators automatically predicting the most probable searching area of the drifting object. This paper presents a novel drifting prediction model to improve the accuracy of the drifting trajectory computation of the sea-surface objects. First, a new drifting kinetic model based on the geometry characteristics of the objects is proposed that involves the effects of the object shape and stochastic motion features in addition to the traditional factors of wind and currents. Then, a computer simulation-based method is employed to analyze the stochastic motion features of the drifting objects, which is applied to estimate the uncertainty parameters of the stochastic factors of the drifting objects. Finally, the accuracy of the model is evaluated by comparison with the flume experimental results. It is shown that the proposed method can be used for various shape objects in the drifting trajectory prediction and the maritime search and rescue decision-making system.展开更多
The ammonium salt corrosion is a typical failure mode for the hydrogenation reaction effluent air cooler(REAC) system. In order to investigate the corrosion characteristics in the REAC system, numerical simulations we...The ammonium salt corrosion is a typical failure mode for the hydrogenation reaction effluent air cooler(REAC) system. In order to investigate the corrosion characteristics in the REAC system, numerical simulations were performed by using the mixture model, the heating transfer model, and the particles tracking model. The results show that the differences between the temperature and the velocity at each cross section of the first-row and second-row tubes are small. The inertia of the particles plays an important role in the particle’s deposition, and the smaller particles distribute more uniformly in the air cooler. However, for larger particles, they prefer falling from the inner side of the vertical elbow, and preferentially depositing at the inlet header and pipes before saturation. In the heat exchanger tubes, the particle deposition number is larger in the second-row tubes than that in the first-row tubes, and the high-risk tubes mainly concentrate on the middle and right side of the air cooler. The kinetic parameters of the particles are in accordance with the blocking-prone position in many real operating conditions.展开更多
In collaboration with 12 other institutions, the Meteorological Observation Center of the China Meteorological Administration undertook a comprehensive marine observation experiment in the South China Sea using the Yi...In collaboration with 12 other institutions, the Meteorological Observation Center of the China Meteorological Administration undertook a comprehensive marine observation experiment in the South China Sea using the Yilong-10 high-altitude large unmanned aerial vehicle(UAV). The Yilong-10 UAV carried a self-developed dropsonde system and a millimeter-wave cloud radar system. In addition, a solar-powered unmanned surface vessel and two drifting buoys were used. The experiment was further supported by an intelligent, reciprocating horizontal drifting radiosonde system that was deployed from the Sansha Meteorological Observing Station, with the intent of producing a stereoscopic observation over the South China Sea. Comprehensive three-dimensional observations were collected using the system from 31 July to2 August, 2020. This information was used to investigate the formation and development processes of Typhoon Sinlaku(2020). The data contain measurements of 21 oceanic and meteorological parameters acquired by the five devices, along with video footage from the UAV. The data proved very helpful in determining the actual location and intensity of Typhoon Sinlaku(2020). The experiment demonstrates the feasibility of using a high-altitude, large UAV to fill in the gaps between operational meteorological observations of marine areas and typhoons near China, and marks a milestone for the use of such data for analyzing the structure and impact of a typhoon in the South China Sea. It also demonstrates the potential for establishing operational UAV meteorological observing systems in the future, and the assimilation of such data into numerical weather prediction models.展开更多
The abnormal increase of drifting brown alga Sargassum horneri was initially documented in 2007.It formed blooms along the coast of East China Sea and Yellow Sea in 2017.In this study,we investigated the changes of sp...The abnormal increase of drifting brown alga Sargassum horneri was initially documented in 2007.It formed blooms along the coast of East China Sea and Yellow Sea in 2017.In this study,we investigated the changes of specific growth rate and resource accumulation of drifting S.horneri in response to temperature and nitrogen richness at different growth stages under laboratory condition.The investigation lasted from June 2015 to April 2016 with the observation made every two months.The results showed that the life cycle consists of a few growth stages dividable with morphological characteristics.The growth can be divided into shedding and withering(August),rapid growing(October to September),slow growing(February),rapid growing(April)and maturation(June)stages.Under the experimental condition,algal segments were found to grow at temperatures ranging from 5 to 25℃in 12 days even when nitrogen is deficient.A significant difference in the special growth rate(SGR)between nitrogen-enriched and nitrogen-removed treatments was found in most months(P<0.05).SGR was lower in August and February than that in other months.Nitrogen and chlorophyll contents in algal segments were different among different temperatures,nitrogen supply and seasons.Nitrogen content was higher in February and April than that in other months in both nitrogen-enriched and nitrogen-removed treatments.The results showed that the demand of S.horneri for nitrogen increased in spring when it grows fast.It is likely that the high temperature and nitrogen concentration in winter and spring lead to the high biomass accumulation of drifting S.horneri.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.40406012)the Innovative Program of Chinese Academy of Sciences(Grant No.KZCX2-SW-117-05)+2 种基金Key Program of National Natural Science Foundation of China(Grant No.40238060)the National Fundamental Research Program(G2000046702)the Nansha Investigation Program(Grant No.2001DIA50041).We also gratefully acknowledge the support of K.C.Wang Education Foundation(Hong Kong)for providing us a chance to introduce this study on the 32nd International Geological Conference.
文摘Independent of Indochina extrusion, the South China Sea experienced a process from passive continental rifting to marginal sea drifting. According to the fault patterns in the Beibu Gulf basin and the Pearl River Mouth basin, the continental rifting and early spreading stage from 32 to 26 Ma were controlled by extensional stress field, which shifted clockwise from southeastward to south southeastward. From 24 Ma on, the sea spread in NW-SE direction and ceased spreading at around 15.5 Ma. Integrated geological information with the assumption that the South China Sea developed along a pre-Cenozoic weakness zone, we did analogue experiments on the South China Sea evolu- tion. Experiments revealed that the pre-existing weakness zone goes roughly along the uplift zone between the present Zhu-1 and Zhu-2 depression. The pre-existing weakness zone is composed of three segments trending NNE, roughly EW and NEE, respectively. The early opening of the South China Sea is accompanied with roughly 15° clockwise rotation, while the SE sub-sea basin opened with SE extension. Tinjar fault was the western boundary of the Nansha block (Dangerous Ground), while Lupar fault was the eastern boundary of the Indochina, NW-trending rift belt known as Zengmu basin developed between above two faults due to block divergent of Indochina from Nansha. In the experiment, transtensional flower structures along NW-trending faults are seen, and slight inversion occurs along some NE-dipping faults. The existence of rigid massifs changed the orientations of some faults and rift belt, and also led to deformation concentrate around the massifs. The rifting and drifting of the South China Sea might be caused by slab pull from the proto South China Sea subducting toward Borneo and/or mantle flow caused by India-Asia collision.
基金This study was supported primarily by grants of Chinese National Arctic Scientific Program and IARC/Frontier Fairbanks +1 种基金USA and the National Natural Science Foundation of China (Grant No. 49975006)
文摘Estimates of the surface heat budget over drifting ice and open water in the Arctic Ocean are made using eddy correlation and flux-profile methods using data obtained from drifting ice and from the R/V Xuelong in the Chinese National Arctic Research Expedition during August 19—24,1999. The results show that the net radiation received by the ice surface is mainly lost through the sensible heat flux and the heat flux due to melting ice, and the latent heat flux making small contribution to the heat balance. However, the heat balance of the open water surface was dominated by the radiative flux whereas the latent and sensible heat fluxes and the oceanic heat flux were greater than those on the sea-ice surface. These results emphasize that thermodynamic processes are quite different between air/open water and air/sea-ice over the Arctic Ocean which is important when considering the effect of sea-air-ice interaction on climate change process dur-ing the summer period.
基金the National Natural Science Foundation of China (Grant no. 40631006)the National Major Science Project of China for Global Change Research (Grant no. 2010CB951403)
文摘Abstract Monthly mean sea ice motion vectors and monthly mean sea level pressure (SLP) for the period of 1979-2006 are investigated to understand the spatial and temporal changes of Arctic sea-ice drift. According to the distinct differences in monthly mean ice velocity field as well as in the distribution of SLP, there are four primary types in the Arctic Ocean: Beaufort Gyre+Transpolar Drift, Anticyclonic Drift, Cyclonic Drift and Double Gyre Drift. These four types account for 81% of the total, and reveal distinct seasonal variations. The Cyclonic Drift with a large-scale anticlockwise ice motion pattern trends to prevail in summer while the Anticyclonic Drift with an opposite pattern trends to prevail in winter and spring. The prevailing seasons for the Beaufort Gyre+Transpolar Drift are spring and autumn, while the Double Gyre Drift trends to prevail in winter, especially in Feb- ruary. The annual occurring times of the Anticyclonic Drift and the Cyclonic Drift are closely correlated with the yearly mean Arc- tic Oscillation (AO) index, with a correlation coefficient of -0.54 and 0.54 (both significant with the confident level of 99%), re- spectively. When the AO index stays in a high positive (negative) condition, the sea-ice motion in the Arctic Ocean demonstrates a more anticlockwise (clockwise) drifting pattern as a whole. When the AO index stays in a neutral condition, the sea-ice motion becomes much more complicated and more transitional types trend to take place.
基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(No.XDB42020203,XDB18020102)the National Key R&D Program of China(No.2016YFC0600408)the Taishan Scholar Program of Shandong(No.TS201712075)。
文摘The Indo-Pacific convergence region is the best target to solve the teo remaining challenges of the plate tectonics theory,i.e.,subduction initiation and the driving force of plate tectonics.Recent studies proposed that the Izu-Bonin subduction initiation belongs to spontaneous initiation,which implies that it started from extension,followed by low angle subduction.Numerical geodynamic modeling suggests that the initiation of plate subduction likely occurred along a transform fault,which put the young spreading ridge in direct contact with old oceanic crust.This,however,does not explain the simultaneous subduction initiation in the west Pacific region in the Cenozoic.Namely,the subduction initiations in the Izu-BoninMariana,the Aleutian,and the Tonga-Kermadec trenches are associated with oceanic crusts of different ages,yet they occurred at roughly the same time,suggesting that they were all triggered by a maj or change in the Pacific plate.Moreover,low angle subduction induces compression rather than extension,which requires external compression forces.Given that the famous Hawaiian-Emperor bending occurred roughly at the same time with the onset of westward subductions in the west Pacific,we propose that these Cenozoic subductions were initiated by the steering of the Pacific plate,which are classified as induced initiation.Induced subduction initiation usually occurs in young ocean basins,forming single-track subduction.The closure s of Neo-Tethys Oceans were likely triggered by plume s in the south,forming northward subductions.Interestingly,the Indian plate kept on moving northward more than 50 Ma after the collision between the Indian and Eurasian continents and the break-off of the subducted oceanic slab attached to it.This strongly suggests that slab pull is not the main driving force of plate tectonics,whereas slab sliding is.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.31100672,51379121 and 61304230)the Shanghai Key Technology Plan Project(Grant Nos.12510501800,13510501600)
文摘There is a huge demand to develop a method for marine search and rescue(SAR) operators automatically predicting the most probable searching area of the drifting object. This paper presents a novel drifting prediction model to improve the accuracy of the drifting trajectory computation of the sea-surface objects. First, a new drifting kinetic model based on the geometry characteristics of the objects is proposed that involves the effects of the object shape and stochastic motion features in addition to the traditional factors of wind and currents. Then, a computer simulation-based method is employed to analyze the stochastic motion features of the drifting objects, which is applied to estimate the uncertainty parameters of the stochastic factors of the drifting objects. Finally, the accuracy of the model is evaluated by comparison with the flume experimental results. It is shown that the proposed method can be used for various shape objects in the drifting trajectory prediction and the maritime search and rescue decision-making system.
基金supported by the National Key R&D Program of China(Grant No.2017YFF0210403)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY17E060008)the Talent Project of Zhejiang Association for Science and Development Project of SINOPEC(No.318023-2)
文摘The ammonium salt corrosion is a typical failure mode for the hydrogenation reaction effluent air cooler(REAC) system. In order to investigate the corrosion characteristics in the REAC system, numerical simulations were performed by using the mixture model, the heating transfer model, and the particles tracking model. The results show that the differences between the temperature and the velocity at each cross section of the first-row and second-row tubes are small. The inertia of the particles plays an important role in the particle’s deposition, and the smaller particles distribute more uniformly in the air cooler. However, for larger particles, they prefer falling from the inner side of the vertical elbow, and preferentially depositing at the inlet header and pipes before saturation. In the heat exchanger tubes, the particle deposition number is larger in the second-row tubes than that in the first-row tubes, and the high-risk tubes mainly concentrate on the middle and right side of the air cooler. The kinetic parameters of the particles are in accordance with the blocking-prone position in many real operating conditions.
基金supported by the Petrel Meteorological Observation Experiment Project of the China Meteorological Administration and the “Adaptive Improvement of New Observation Platform for Typhoon Observation (2018YFC1506401)” of the Ministry of Science and Technology。
文摘In collaboration with 12 other institutions, the Meteorological Observation Center of the China Meteorological Administration undertook a comprehensive marine observation experiment in the South China Sea using the Yilong-10 high-altitude large unmanned aerial vehicle(UAV). The Yilong-10 UAV carried a self-developed dropsonde system and a millimeter-wave cloud radar system. In addition, a solar-powered unmanned surface vessel and two drifting buoys were used. The experiment was further supported by an intelligent, reciprocating horizontal drifting radiosonde system that was deployed from the Sansha Meteorological Observing Station, with the intent of producing a stereoscopic observation over the South China Sea. Comprehensive three-dimensional observations were collected using the system from 31 July to2 August, 2020. This information was used to investigate the formation and development processes of Typhoon Sinlaku(2020). The data contain measurements of 21 oceanic and meteorological parameters acquired by the five devices, along with video footage from the UAV. The data proved very helpful in determining the actual location and intensity of Typhoon Sinlaku(2020). The experiment demonstrates the feasibility of using a high-altitude, large UAV to fill in the gaps between operational meteorological observations of marine areas and typhoons near China, and marks a milestone for the use of such data for analyzing the structure and impact of a typhoon in the South China Sea. It also demonstrates the potential for establishing operational UAV meteorological observing systems in the future, and the assimilation of such data into numerical weather prediction models.
基金supported by the Public Science and Technology Research Funds of Ocean from State Oceanic Administration, People’s Republic of China (Nos. 200905 0202, 201405040-4)
文摘The abnormal increase of drifting brown alga Sargassum horneri was initially documented in 2007.It formed blooms along the coast of East China Sea and Yellow Sea in 2017.In this study,we investigated the changes of specific growth rate and resource accumulation of drifting S.horneri in response to temperature and nitrogen richness at different growth stages under laboratory condition.The investigation lasted from June 2015 to April 2016 with the observation made every two months.The results showed that the life cycle consists of a few growth stages dividable with morphological characteristics.The growth can be divided into shedding and withering(August),rapid growing(October to September),slow growing(February),rapid growing(April)and maturation(June)stages.Under the experimental condition,algal segments were found to grow at temperatures ranging from 5 to 25℃in 12 days even when nitrogen is deficient.A significant difference in the special growth rate(SGR)between nitrogen-enriched and nitrogen-removed treatments was found in most months(P<0.05).SGR was lower in August and February than that in other months.Nitrogen and chlorophyll contents in algal segments were different among different temperatures,nitrogen supply and seasons.Nitrogen content was higher in February and April than that in other months in both nitrogen-enriched and nitrogen-removed treatments.The results showed that the demand of S.horneri for nitrogen increased in spring when it grows fast.It is likely that the high temperature and nitrogen concentration in winter and spring lead to the high biomass accumulation of drifting S.horneri.