期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于神经网络的减阻沟槽壁面形状优化
被引量:
1
1
作者
李超群
唐硕
+1 位作者
李易
耿子海
《航空动力学报》
EI
CAS
CSCD
北大核心
2022年第3期639-648,共10页
针对沟槽外形减阻问题,采用基于神经网络的方法对沟槽壁面形状进行外形优化。模型采用槽道流动模型,控制方程为黏性不可压缩Navier⁃Stokes(NS)方程,流动求解采用直接数值模拟(DNS)方法,对于对流项的离散采用紧致4阶中心格式,对黏性项的...
针对沟槽外形减阻问题,采用基于神经网络的方法对沟槽壁面形状进行外形优化。模型采用槽道流动模型,控制方程为黏性不可压缩Navier⁃Stokes(NS)方程,流动求解采用直接数值模拟(DNS)方法,对于对流项的离散采用紧致4阶中心格式,对黏性项的离散采用4阶中心格式,时间推进采用3阶Runge⁃Kutta格式。在神经网络优化过程中,约束方程为不可压NS方程,采用基于在线学习的自适应控制器,使用基于抑制展向切应力的控制律,控制量的产生由壁面变形提供。优化结果表明,壁面最大减阻效果可达17.41%。对于优化后的壁面,湍流强度降低了19.68%,同时壁面的涡量与雷诺切应力亦有所降低。由于湍流流动非定常,因此优化得到的壁面形状亦是时变的,但变化的过程中整体上仍呈现流向沟槽的形状。
展开更多
关键词
神经网络
槽道流动
壁面形状优化
减阻沟槽
流动控制
原文传递
题名
基于神经网络的减阻沟槽壁面形状优化
被引量:
1
1
作者
李超群
唐硕
李易
耿子海
机构
西北工业大学航天学院
西北工业大学航空学院
中国空气动力研究与发展中心低速空气动力研究所
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2022年第3期639-648,共10页
基金
装备预研。
文摘
针对沟槽外形减阻问题,采用基于神经网络的方法对沟槽壁面形状进行外形优化。模型采用槽道流动模型,控制方程为黏性不可压缩Navier⁃Stokes(NS)方程,流动求解采用直接数值模拟(DNS)方法,对于对流项的离散采用紧致4阶中心格式,对黏性项的离散采用4阶中心格式,时间推进采用3阶Runge⁃Kutta格式。在神经网络优化过程中,约束方程为不可压NS方程,采用基于在线学习的自适应控制器,使用基于抑制展向切应力的控制律,控制量的产生由壁面变形提供。优化结果表明,壁面最大减阻效果可达17.41%。对于优化后的壁面,湍流强度降低了19.68%,同时壁面的涡量与雷诺切应力亦有所降低。由于湍流流动非定常,因此优化得到的壁面形状亦是时变的,但变化的过程中整体上仍呈现流向沟槽的形状。
关键词
神经网络
槽道流动
壁面形状优化
减阻沟槽
流动控制
Keywords
neural
networks
channel
flow
shape
sub
⁃
optimization
drag
⁃
reducing
riblet
flow
control
分类号
V211.3 [航空宇航科学与技术—航空宇航推进理论与工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于神经网络的减阻沟槽壁面形状优化
李超群
唐硕
李易
耿子海
《航空动力学报》
EI
CAS
CSCD
北大核心
2022
1
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部