The flow past two tandem circular cylinders of different diameters was simulated using the finite volume method. The diameter of the downstream main cylinder (D) was kept constant, and the diameter of the upstream c...The flow past two tandem circular cylinders of different diameters was simulated using the finite volume method. The diameter of the downstream main cylinder (D) was kept constant, and the diameter of the upstream control cylinder (d) varied from 0.1D to D. The studied Reynolds numbers based on the diameter of the downstream main cylinder were 100 and 150. The gap between the control cylinder and the main cylinder (G) ranged from 0.1D to 4D. It is concluded that the gap-to-diameter ratio (G/D) and the diameter ratio between the two cylinders (d/D) have important effects on the drag and lift coefficients, pressure distributions around the cylinders, vortex shedding frequencies from the two cylinders, and flow characteristics.展开更多
The effect of the turbulence intensity of the oncoming stream on the aerodynamic characteristics of the NACA-0012 airfoil is investigated by a direct numerical simulation. The numerical results are found to be consist...The effect of the turbulence intensity of the oncoming stream on the aerodynamic characteristics of the NACA-0012 airfoil is investigated by a direct numerical simulation. The numerical results are found to be consistent with the experimental measurements. Based on the finite spectral QUICK scheme, the simulation gets the high accuracy results. Both the simulation and the experiment reveal that the airfoil stall does not exist for the low turbulence intensity, however, occurs when the turbulence intensity increases sufficiently. Besides, the turbulence intensity has a significant effect on both the airfoil boundary layer and the separated shear layer.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.40871050)
文摘The flow past two tandem circular cylinders of different diameters was simulated using the finite volume method. The diameter of the downstream main cylinder (D) was kept constant, and the diameter of the upstream control cylinder (d) varied from 0.1D to D. The studied Reynolds numbers based on the diameter of the downstream main cylinder were 100 and 150. The gap between the control cylinder and the main cylinder (G) ranged from 0.1D to 4D. It is concluded that the gap-to-diameter ratio (G/D) and the diameter ratio between the two cylinders (d/D) have important effects on the drag and lift coefficients, pressure distributions around the cylinders, vortex shedding frequencies from the two cylinders, and flow characteristics.
基金Project supported by the National Natural Science Foundation of China(No.108720006)the National Basic Research Program of China(973 Program)(No.2007CB714601)
文摘The effect of the turbulence intensity of the oncoming stream on the aerodynamic characteristics of the NACA-0012 airfoil is investigated by a direct numerical simulation. The numerical results are found to be consistent with the experimental measurements. Based on the finite spectral QUICK scheme, the simulation gets the high accuracy results. Both the simulation and the experiment reveal that the airfoil stall does not exist for the low turbulence intensity, however, occurs when the turbulence intensity increases sufficiently. Besides, the turbulence intensity has a significant effect on both the airfoil boundary layer and the separated shear layer.