We investigate the quantum entanglement in a double-cavity optomechanical system consisting of an optomechanical cavity and an auxiliary cavity,where the optomechanical cavity mode couples with the mechanical mode via...We investigate the quantum entanglement in a double-cavity optomechanical system consisting of an optomechanical cavity and an auxiliary cavity,where the optomechanical cavity mode couples with the mechanical mode via radiation-pressure interaction,and simultaneously couples with the auxiliary cavity mode via nonreciprocal coupling.We study the entanglement between the mechanical oscillator and the cavity modes when the two cavities are reciprocally or non-reciprocally coupled.The logarithmic negativity E_(n)^((1))(E_(n)^((2)))is adopted to describe the entanglement degree between the mechanical mode and the optomechanical cavity mode(the auxiliary cavity mode).We find that both E_(n)^((1))and E_(n)^((2))have maximum values in the case of reciprocal coupling.By using nonreciprocal coupling,E_(n)^((1))and E_(n)^((2))can exceed those maximum values,and a wider detuning region where the entanglement exists can be obtained.Moreover,the entanglement robustness with respect to the environment temperature is also effectively enhanced.展开更多
This paper describes the interaction between two spatial modes of the optical fields with a single atom trapped inner coupled double-cavity. Theoretical derivation and numerical simulation with the experimental availa...This paper describes the interaction between two spatial modes of the optical fields with a single atom trapped inner coupled double-cavity. Theoretical derivation and numerical simulation with the experimental available parameters show that photon-photon switching and π phase shift of single photons may be achieved with current experimental technology. As the probe and control fields are in different spatial modes, the system is superior for implementing cavity QED-based photonic quantum networks.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12047520,61941501,61775062,11574092,61378012,91121023,62071186 and 61771205).
文摘We investigate the quantum entanglement in a double-cavity optomechanical system consisting of an optomechanical cavity and an auxiliary cavity,where the optomechanical cavity mode couples with the mechanical mode via radiation-pressure interaction,and simultaneously couples with the auxiliary cavity mode via nonreciprocal coupling.We study the entanglement between the mechanical oscillator and the cavity modes when the two cavities are reciprocally or non-reciprocally coupled.The logarithmic negativity E_(n)^((1))(E_(n)^((2)))is adopted to describe the entanglement degree between the mechanical mode and the optomechanical cavity mode(the auxiliary cavity mode).We find that both E_(n)^((1))and E_(n)^((2))have maximum values in the case of reciprocal coupling.By using nonreciprocal coupling,E_(n)^((1))and E_(n)^((2))can exceed those maximum values,and a wider detuning region where the entanglement exists can be obtained.Moreover,the entanglement robustness with respect to the environment temperature is also effectively enhanced.
基金Project supported by the National Natural Science Foundation of China (Grants Nos 10574022 and 10575022)the Funds of Educational Committee of Fujian Province, China (Grant Nos JB07043)
文摘This paper describes the interaction between two spatial modes of the optical fields with a single atom trapped inner coupled double-cavity. Theoretical derivation and numerical simulation with the experimental available parameters show that photon-photon switching and π phase shift of single photons may be achieved with current experimental technology. As the probe and control fields are in different spatial modes, the system is superior for implementing cavity QED-based photonic quantum networks.