AIM: To study the efficacy and the safety of laser lithotripsy without direct visual control by using a balloon catheter in patients with bile duct stones that could not be extracted by standard technique. METHODS: Th...AIM: To study the efficacy and the safety of laser lithotripsy without direct visual control by using a balloon catheter in patients with bile duct stones that could not be extracted by standard technique. METHODS: The seventeen patients (7 male and 10 female; mean age 67.8 years) with difficult common bile duct (CBD) stones were not amenable for conventional endoscopic maneuvers such as sphincterotomy and mechanical lithotripsy were included in this study. Laser wavelengths of 532 nm and 1064 nm as a double pulse were applied with pulse energy of 120 mJ. The laser fiber was advanced under fluoroscopic control through the ERCP balloon catheter. Laser lithotripsy was continued until the fragment size seemed to be less than 10 mm. Endoscopic extraction of the stones and fragments was performed with the use of the Dormia basket and balloon catheter. RESULTS: Bile duct clearance was achieved in 15 of 17 patients (88%). The mean number of treatment sessions was 1.7 ± 0.6. Endoscopic stone removal could not be achieved in 2 patients (7%). Adverse effects were noted in three patients (hemobilia, pancreatitis, and cholangitis). CONCLUSION: The Frequency Doubled Double Pulse Nd:YAG (FREDDY) laser may be an effective and safe technique in treatment of difficult bile duct stones.展开更多
In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectra...In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.展开更多
In the double-cone ignition schemes(DCIS), the deuterium–tritium target shell is ablated and compressed by a highpower nanosecond laser in Au-cones to generate plasmas. Under the actions of spherically symmetric comp...In the double-cone ignition schemes(DCIS), the deuterium–tritium target shell is ablated and compressed by a highpower nanosecond laser in Au-cones to generate plasmas. Under the actions of spherically symmetric compression and acceleration along the Au cone, they will be ejected out of the cone mouth and collide with each other. The plasmas experience conversion from kinetic energy to internal energy at the vertex of the geometric center of two Au cones that are symmetric to each other, because of which high-density fusion plasmas are preheated. This key physical process has undergone experimental verification on the Shenguang-II upgraded facility in China. Apparently, the improvement and optimization of the velocity of plasmas in hypersonic jet flow at the cone mouth are crucial for the success of the DCIS. In the DCIR7 experiment of the Shenguang-II upgraded facility, a velocity yield of approximately 130–260 km/s was achieved for the plasmas at the cone mouth, with a result of nearly 300 km/s based on numerical simulation. In this paper, theoretical analysis is performed as regards the process, in which target shells are ablated and compressed by laser to generate highvelocity plasmas ejected through jet flow. Based on this analysis, the formula for the velocity of plasmas in supersonic jet flow at the cone mouth is proposed. This study also provides measures that are more effective for improving the kinetic energy of plasmas and optimizing energy conversion efficiency, which can serve as theoretical references for the adjustment and optimization of processes in subsequent experiments.展开更多
The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable ...The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable part of the sequential double ionization(DI) events of molecules occur through internal collision double ionization(ICD), and the ICD recollision mechanism is significantly different from that in non-sequential double ionization(NSDI). By analyzing the results of internuclear distances R = 5 a.u. and 2 a.u., these two recollision mechanisms are studied in depth. It is found that the dynamic behaviors of the recollision mechanisms of NSDI and ICD are similar. For NSDI, the motion range of electrons after the ionization is relatively large, and the electrons will return to the core after a period of time. In the ICD process,electrons will rotate around the parent ion before ionization, and the distance of the electron motion is relatively small. After a period of time, the electrons will come back to the core and collide with another electron. Furthermore, the molecular internuclear distance has a significant effect on the electron dynamic behavior of the two ionization mechanisms. This study will help to understand the multi-electron ionization process of complex systems.展开更多
Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)la...Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.展开更多
A novel spatial double-pulse laser ablation scheme is investigated to enhance the processing quality and efficiency fornanosecond laser ablation of silicon substrate. During the double-pulse laser ablation, two splitt...A novel spatial double-pulse laser ablation scheme is investigated to enhance the processing quality and efficiency fornanosecond laser ablation of silicon substrate. During the double-pulse laser ablation, two splitted laser beams simulta-neously irradiate on silicon surface at a tunable gap. The ablation quality and efficiency are evaluated by both scanning electron microscope and laser scanning confocal microscope. As tuning the gap distance, the ablation can be signifi-cantly enhanced if the spatial interaction between the two splitted laser pulses is optimized. The underlying physical mechanism for the interacting spatial double-pulse enhancement effect is attributed to the redistribution of the integratedenergy field, corresponding to the temperature field. This new method has great potential applications in laser microm-achining of functional devices at higher processing quality and faster speed.展开更多
Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, w...Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, we study the process of NSDI of argon atoms driven by a few-cycle orthogonal two-color laser field composed of 800 nm and 400 nm laser pulses. By changing the relative phase of the two laser pulses, a localized enhancement of NSDI yield is observed at 0.5πand 1.5π, which could be attributed to a rapid and substantial increase in the number of electrons returning to the parent ion within extremely short time intervals at these specific phases. Through the analysis of the electron–electron momentum correlations within different time windows of NSDI events and the angular distributions of emitted electrons in different channels, we observe a more pronounced electron–electron correlation phenomenon in the recollision-induced ionization(RII) channel. This is attributed to the shorter delay time in the RII channel.展开更多
<strong>Aim:</strong> To evaluate the efficacy and safety of intraluminal lithotripsy with a pneumatic lithotripter (EMS, Switzerland) and laser Holmium YAG in retrograde rigid ureteroscopy for proximal an...<strong>Aim:</strong> To evaluate the efficacy and safety of intraluminal lithotripsy with a pneumatic lithotripter (EMS, Switzerland) and laser Holmium YAG in retrograde rigid ureteroscopy for proximal and distal ureteric calculi. <strong>Materials and Methods:</strong> This was a retrospective study carried out from January 2015 to December 2019 including 175 patients with ureteric calculi who presented with ureteric colic at a mini-invasive surgical urological center in Douala, Cameroon. All the patients underwent retrograde ureteroscopy with a 7F rigid ureteroscope, and fragmentation was done with either a pneumatic lithotripter or a laser holmium YAG. Six patients who had urinary tract infection benefited from double J stent placement before retrograde ureteroscopy. The study variables included age, clinical symptoms, size and location of the stone, the type of lithotripsy, operating time, and the results of lithotripsy. <strong>Results:</strong> We included a total of 175 patients with a mean age of 40.95 ± 12.50 years. Seventy-six (43.43%) of our participants were females and all patients had at least one calculus confirmed by a CT scan. Stone sizes ranged from 5 - 26 mm (median of 12 mm). Fifteen (8.57%) stones were located in the upper ureter (pyeloureteric junction), 64 in the middle ureter, 20 in the iliac ureter, 43 in the pelvic ureter, and 33 at the vesico-ureteric orifice. The success rate was 100% for stones located in the iliac ureter, pelvic ureter and the ureteric orifice. For those in the middle and upper ureter, the success rate was 92.18% and 60%, respectively. <strong>Conclusion:</strong> Rigid ureteroscopy is an excellent treatment modality for ureteral calculi, especially those located at the distal part of the ureter. The procedure is associated with a shorter operation time and a shorter post-operative hospitalization period, in addition to its safety and effectiveness compared to open surgery.展开更多
基金The 2007 research fund of Wonkwang University and Wonkwang Clinical Research Institute
文摘AIM: To study the efficacy and the safety of laser lithotripsy without direct visual control by using a balloon catheter in patients with bile duct stones that could not be extracted by standard technique. METHODS: The seventeen patients (7 male and 10 female; mean age 67.8 years) with difficult common bile duct (CBD) stones were not amenable for conventional endoscopic maneuvers such as sphincterotomy and mechanical lithotripsy were included in this study. Laser wavelengths of 532 nm and 1064 nm as a double pulse were applied with pulse energy of 120 mJ. The laser fiber was advanced under fluoroscopic control through the ERCP balloon catheter. Laser lithotripsy was continued until the fragment size seemed to be less than 10 mm. Endoscopic extraction of the stones and fragments was performed with the use of the Dormia basket and balloon catheter. RESULTS: Bile duct clearance was achieved in 15 of 17 patients (88%). The mean number of treatment sessions was 1.7 ± 0.6. Endoscopic stone removal could not be achieved in 2 patients (7%). Adverse effects were noted in three patients (hemobilia, pancreatitis, and cholangitis). CONCLUSION: The Frequency Doubled Double Pulse Nd:YAG (FREDDY) laser may be an effective and safe technique in treatment of difficult bile duct stones.
基金supported by the National Key R&D Program of China (No. 2017YFA0304203)the National Energy R&D Center of Petroleum Refining Technology (RIPP, SINOPEC)+3 种基金Changjiang Scholars and Innovative Research Team at the University of the Ministry of Education of China (No. IRT_17R70)National Natural Science Foundation of China (NSFC) (Nos. 61975103, 61875108 and 627010407)111 Project (No. D18001)Fund for Shanxi (No. 1331KSC)
文摘In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.
基金Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDA25051000 and XDA 25010100)。
文摘In the double-cone ignition schemes(DCIS), the deuterium–tritium target shell is ablated and compressed by a highpower nanosecond laser in Au-cones to generate plasmas. Under the actions of spherically symmetric compression and acceleration along the Au cone, they will be ejected out of the cone mouth and collide with each other. The plasmas experience conversion from kinetic energy to internal energy at the vertex of the geometric center of two Au cones that are symmetric to each other, because of which high-density fusion plasmas are preheated. This key physical process has undergone experimental verification on the Shenguang-II upgraded facility in China. Apparently, the improvement and optimization of the velocity of plasmas in hypersonic jet flow at the cone mouth are crucial for the success of the DCIS. In the DCIR7 experiment of the Shenguang-II upgraded facility, a velocity yield of approximately 130–260 km/s was achieved for the plasmas at the cone mouth, with a result of nearly 300 km/s based on numerical simulation. In this paper, theoretical analysis is performed as regards the process, in which target shells are ablated and compressed by laser to generate highvelocity plasmas ejected through jet flow. Based on this analysis, the formula for the velocity of plasmas in supersonic jet flow at the cone mouth is proposed. This study also provides measures that are more effective for improving the kinetic energy of plasmas and optimizing energy conversion efficiency, which can serve as theoretical references for the adjustment and optimization of processes in subsequent experiments.
基金the National Key Research and Development Program of China (Grant No.2019YFA0307700)the National Natural Science Foundation of China (Grant Nos.12074145 and 11975012)+1 种基金Jilin Provincial Research Foundation for Basic Research,China (Grant No.20220101003JC)Jilin Provincial Education Department (Grant No.JJKH20230284KJ)。
文摘The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable part of the sequential double ionization(DI) events of molecules occur through internal collision double ionization(ICD), and the ICD recollision mechanism is significantly different from that in non-sequential double ionization(NSDI). By analyzing the results of internuclear distances R = 5 a.u. and 2 a.u., these two recollision mechanisms are studied in depth. It is found that the dynamic behaviors of the recollision mechanisms of NSDI and ICD are similar. For NSDI, the motion range of electrons after the ionization is relatively large, and the electrons will return to the core after a period of time. In the ICD process,electrons will rotate around the parent ion before ionization, and the distance of the electron motion is relatively small. After a period of time, the electrons will come back to the core and collide with another electron. Furthermore, the molecular internuclear distance has a significant effect on the electron dynamic behavior of the two ionization mechanisms. This study will help to understand the multi-electron ionization process of complex systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12204132 and 12304376)Excellent Youth Science Foundation of Shandong Province (Overseas) (Grant No.2022HWYQ-073)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.HIT.OCEF.2022042)Natural Science Foundation of Shandong Province (Grant No.ZR2023QA075)。
文摘Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.
基金We are grateful for financial supports from the National Natural Science Foundation of China under Grant (No. 61605162) Singapore Maritime Institute under the research project Grant (No. SMI-2015-OF-10)+1 种基金 Natural Science Foundation of Fujian Province of China under Grant (No. 2017J05106) and Collaborative Innovation Center of High-End Equipment Manufacturing in Fujian.
文摘A novel spatial double-pulse laser ablation scheme is investigated to enhance the processing quality and efficiency fornanosecond laser ablation of silicon substrate. During the double-pulse laser ablation, two splitted laser beams simulta-neously irradiate on silicon surface at a tunable gap. The ablation quality and efficiency are evaluated by both scanning electron microscope and laser scanning confocal microscope. As tuning the gap distance, the ablation can be signifi-cantly enhanced if the spatial interaction between the two splitted laser pulses is optimized. The underlying physical mechanism for the interacting spatial double-pulse enhancement effect is attributed to the redistribution of the integratedenergy field, corresponding to the temperature field. This new method has great potential applications in laser microm-achining of functional devices at higher processing quality and faster speed.
基金partly supported by the National Natural Science Foundation of China (Grant Nos. 12034008,12250003, and 11727810)the Program of Introducing Talents of Discipline to Universities 111 Project (B12024)。
文摘Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, we study the process of NSDI of argon atoms driven by a few-cycle orthogonal two-color laser field composed of 800 nm and 400 nm laser pulses. By changing the relative phase of the two laser pulses, a localized enhancement of NSDI yield is observed at 0.5πand 1.5π, which could be attributed to a rapid and substantial increase in the number of electrons returning to the parent ion within extremely short time intervals at these specific phases. Through the analysis of the electron–electron momentum correlations within different time windows of NSDI events and the angular distributions of emitted electrons in different channels, we observe a more pronounced electron–electron correlation phenomenon in the recollision-induced ionization(RII) channel. This is attributed to the shorter delay time in the RII channel.
文摘<strong>Aim:</strong> To evaluate the efficacy and safety of intraluminal lithotripsy with a pneumatic lithotripter (EMS, Switzerland) and laser Holmium YAG in retrograde rigid ureteroscopy for proximal and distal ureteric calculi. <strong>Materials and Methods:</strong> This was a retrospective study carried out from January 2015 to December 2019 including 175 patients with ureteric calculi who presented with ureteric colic at a mini-invasive surgical urological center in Douala, Cameroon. All the patients underwent retrograde ureteroscopy with a 7F rigid ureteroscope, and fragmentation was done with either a pneumatic lithotripter or a laser holmium YAG. Six patients who had urinary tract infection benefited from double J stent placement before retrograde ureteroscopy. The study variables included age, clinical symptoms, size and location of the stone, the type of lithotripsy, operating time, and the results of lithotripsy. <strong>Results:</strong> We included a total of 175 patients with a mean age of 40.95 ± 12.50 years. Seventy-six (43.43%) of our participants were females and all patients had at least one calculus confirmed by a CT scan. Stone sizes ranged from 5 - 26 mm (median of 12 mm). Fifteen (8.57%) stones were located in the upper ureter (pyeloureteric junction), 64 in the middle ureter, 20 in the iliac ureter, 43 in the pelvic ureter, and 33 at the vesico-ureteric orifice. The success rate was 100% for stones located in the iliac ureter, pelvic ureter and the ureteric orifice. For those in the middle and upper ureter, the success rate was 92.18% and 60%, respectively. <strong>Conclusion:</strong> Rigid ureteroscopy is an excellent treatment modality for ureteral calculi, especially those located at the distal part of the ureter. The procedure is associated with a shorter operation time and a shorter post-operative hospitalization period, in addition to its safety and effectiveness compared to open surgery.