期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Asymptotic Inference for the Weak Stationary Double AR(1) Model 被引量:3
1
作者 Fang Chang Augustine C. M. Wong Yanyan Wu 《Open Journal of Statistics》 2012年第2期141-152,共12页
An AR(1) model with ARCH(1) error structure is known as the first-order double autoregressive (DAR(1)) model. In this paper, a conditional likelihood based method is proposed to obtain inference for the two scalar par... An AR(1) model with ARCH(1) error structure is known as the first-order double autoregressive (DAR(1)) model. In this paper, a conditional likelihood based method is proposed to obtain inference for the two scalar parameters of interest of the DAR(1) model. Theoretically, the proposed method has rate of convergence O(n-3/2). Applying the proposed method to a real-life data set shows that the results obtained by the proposed method can be quite different from the results obtained by the existing methods. Results from Monte Carlo simulation studies illustrate the supreme accuracy of the proposed method even when the sample size is small. 展开更多
关键词 CANONICAL Parameter double autoregressive model P-VALUE Function SIGNED Log-Likelihood Ratio Statistic
下载PDF
Moving Average Model with an Alternative GARCH-Type Error 被引量:2
2
作者 Huafeng ZHU Xingfa ZHANG +1 位作者 Xin LIANG Yuan LI 《Journal of Systems Science and Information》 CSCD 2018年第2期165-177,共13页
Motivated by the double autoregressive model with order p(DAR(p) model), in this paper,we study the moving average model with an alternative GARCH error. The model is an extension from DAR(p) model by letting the orde... Motivated by the double autoregressive model with order p(DAR(p) model), in this paper,we study the moving average model with an alternative GARCH error. The model is an extension from DAR(p) model by letting the order p goes to infinity. The quasi maximum likelihood estimator of the parameters in the model is shown to be asymptotically normal, without any strong moment conditions.Simulation results confirm that our estimators perform well. We also apply our model to study a real data set and it has better fitting performance compared to DAR model for the considered data. 展开更多
关键词 moving average model double autoregressive model quasi maximum likelihood estimator
原文传递
基于季节长记忆双自回归模型的日径流模拟
3
作者 王慧敏 宋松柏 张更喜 《水利学报》 EI CSCD 北大核心 2023年第6期686-695,共10页
传统时间序列模型无法同时考虑径流序列的长记忆性和时变波动性,且模型参数限制严格,从而使日径流序列模拟受到限制,影响径流模拟预测精度。本文提出了同时考虑非平稳性、季节性、长记忆性和时变波动性的新型双自回归模型(WOA-SFIDAR),... 传统时间序列模型无法同时考虑径流序列的长记忆性和时变波动性,且模型参数限制严格,从而使日径流序列模拟受到限制,影响径流模拟预测精度。本文提出了同时考虑非平稳性、季节性、长记忆性和时变波动性的新型双自回归模型(WOA-SFIDAR),并与经典长记忆波动率模型(SFIAR-GARCH)进行对比,选取渭河流域4个水文站日径流序列进行模拟验证。结果表明:WOA-SFIDAR模型的模拟能力优于SFIAR-GARCH模型,模拟结果很好地保持了日径流过程的统计特性。7、8月份模拟均值误差相对较大,WOA-SFIDAR模型的误差范围(5.72~32.56)低于SFIAR-GARCH模型(7.42~48.02)。WOA-SFIDAR模拟逐月变差系数(C v)和偏态系数(C s)与实测序列统计值间偏差范围为0~0.51和0.02~1.31,优于SFIAR-GARCH模型(0.02~0.56和0.06~1.52);模拟结果能够保持日径流序列自相关系数(ACF)的变化趋势,且随滞时的增加,实测序列与模拟序列的ACF差距减小。文中模型扩展了水文随机模拟方法,可为日径流模拟和预报提供一种新途径。 展开更多
关键词 长记忆性 时变波动性 径流模拟 双自回归模型 渭河流域
下载PDF
非线性时间序列建模的异方差混合双AR模型 被引量:3
4
作者 王红军 田铮 党怀义 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第6期879-885,共7页
研究了可用于非线性时间序列建模的异方差混合双自回归模型(heteroscedastic mixture double- autoregressive model,HMDAR),给出了HMDAR模型的平稳性条件,利用ECM(expectation conditional maximization)算法来估计模型的参数,运用BIC(... 研究了可用于非线性时间序列建模的异方差混合双自回归模型(heteroscedastic mixture double- autoregressive model,HMDAR),给出了HMDAR模型的平稳性条件,利用ECM(expectation conditional maximization)算法来估计模型的参数,运用BIC(Bayes information criterion)准则来选择模型.HMDAR模型条件分布富于变化的特征使它能够对具有非对称或多峰分布的序列进行建模,将HMDAR模型应用于几个模拟和实际数据集均得到了较为满意的结果,特别是对波动较大的序列,HMDAR模型能比其他模型更好地捕捉到数据序列的特征. 展开更多
关键词 异方差混合双自回归模型 平稳性 BIC准则 ECM算法 非对称分布 多峰分布 条件异方差
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部