The appearance of abnormal growths on the planarian, Dugesia dorotocephala, in response to cadmium with and without pre-exposure to L-buthionine-R, S-sulfoximine (BSO) and concurrent exposure to the polychlorinated bi...The appearance of abnormal growths on the planarian, Dugesia dorotocephala, in response to cadmium with and without pre-exposure to L-buthionine-R, S-sulfoximine (BSO) and concurrent exposure to the polychlorinated biphenyls (PCBs) Aroclor 1254, PCB 28, PCB 110 or PCB 126 is described. Pigmented rose thorn (PRT) lesions were non-invasive and appeared in response to PCBs. Post-head (PH) lesions developed in up to 100% of the animals within 6-20 days post-dosing, progressed rather rapidly and were highly invasive. Round tail tip (RTT) lesions appeared in lower frequencies within 10-30 days, but progressed extremely rapidly resulting in tail loss within 48 h. We have referred to these types of lesions as 'tumors', but they are not necessarily characteristic of vertebrate neoplasms.PCBs interacted with cadmium in a complex way, in some cases increasing total lesions and decreasing time-to-lesion and in other cases having the opposite effects. A three-factor (PCB, PCB dose, Cd dose) nested analysis of variance model was used to determine lesion rates in order to compare PCB potencies as potentiators or antagonists. The Aroclor mixture was always the least potent co-toxicant but appeared to be the most potent antagonist; the coplanar PCB 126 was the most potent co-toxicant. The complex response surfaces and the lack of stoichiometry in dose-response relationships indicate that multiple mechanisms are responsible for PH and RTT lesions in planarians. These results emphasize the complexity of PCB toxicities and suggest further studies to validate the planarian model as a screen for combinations or environmental mixtures which may have altered biological potency in other species.展开更多
文摘The appearance of abnormal growths on the planarian, Dugesia dorotocephala, in response to cadmium with and without pre-exposure to L-buthionine-R, S-sulfoximine (BSO) and concurrent exposure to the polychlorinated biphenyls (PCBs) Aroclor 1254, PCB 28, PCB 110 or PCB 126 is described. Pigmented rose thorn (PRT) lesions were non-invasive and appeared in response to PCBs. Post-head (PH) lesions developed in up to 100% of the animals within 6-20 days post-dosing, progressed rather rapidly and were highly invasive. Round tail tip (RTT) lesions appeared in lower frequencies within 10-30 days, but progressed extremely rapidly resulting in tail loss within 48 h. We have referred to these types of lesions as 'tumors', but they are not necessarily characteristic of vertebrate neoplasms.PCBs interacted with cadmium in a complex way, in some cases increasing total lesions and decreasing time-to-lesion and in other cases having the opposite effects. A three-factor (PCB, PCB dose, Cd dose) nested analysis of variance model was used to determine lesion rates in order to compare PCB potencies as potentiators or antagonists. The Aroclor mixture was always the least potent co-toxicant but appeared to be the most potent antagonist; the coplanar PCB 126 was the most potent co-toxicant. The complex response surfaces and the lack of stoichiometry in dose-response relationships indicate that multiple mechanisms are responsible for PH and RTT lesions in planarians. These results emphasize the complexity of PCB toxicities and suggest further studies to validate the planarian model as a screen for combinations or environmental mixtures which may have altered biological potency in other species.