期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于字符和词特征融合的恶意域名检测
1
作者 赵宏 申宋彦 +1 位作者 韩力毅 吴喜川 《计算机工程与设计》 北大核心 2024年第5期1549-1556,共8页
针对现有恶意域名检测方法对域名生成算法(domain generation algorithm, DGA)随机产生的恶意域名检测性能不高,且对由随机单词组成的恶意域名检测效果较差的问题,提出一种基于字符和词特征融合的恶意域名检测算法(cha-racter and word ... 针对现有恶意域名检测方法对域名生成算法(domain generation algorithm, DGA)随机产生的恶意域名检测性能不高,且对由随机单词组成的恶意域名检测效果较差的问题,提出一种基于字符和词特征融合的恶意域名检测算法(cha-racter and word network, CWNet)。利用并行卷积神经网络分别提取域名中字符和词的特征;将两种特征进行拼接,构造成融合特征;利用Softmax函数实现合法域名与恶意域名的检测。实验结果表明,该算法可以提升对恶意域名的检测能力,对更具挑战性的恶意域名家族的检测准确率提升效果更为明显。 展开更多
关键词 恶意域名检测 域名生成算法 深度学习 卷积神经网络 特征融合 向量表示 损失函数
下载PDF
基于深度学习的DGA恶意域名检测
2
作者 周婧莹 黎宇 曾楚轩 《邮电设计技术》 2024年第8期13-17,共5页
攻击者常使用域名生成算法(DGA)生成大量的随机域名来传输恶意软件控制指令,而传统DGA检测方法存在计算量大、检测精确度低等问题,采用机器学习和深度学习的方法可极大缓解上述问题。首先从域名的基本特征、语言特征和统计特征3个方面对... 攻击者常使用域名生成算法(DGA)生成大量的随机域名来传输恶意软件控制指令,而传统DGA检测方法存在计算量大、检测精确度低等问题,采用机器学习和深度学习的方法可极大缓解上述问题。首先从域名的基本特征、语言特征和统计特征3个方面对DGA域名和正常域名进行特征提取,在特征集上采用机器学习算法进行模型训练;同时,采用长短期记忆(LSTM)网络以域名字符串的嵌入向量作为输入,提取域名的深度特征进行域名检测。通过查准率、召回率、F1-score、ROC曲线、AUC值等评测指标对模型训练结果进行对比,获得较优的DGA域名检测模型。 展开更多
关键词 域名生成算法 机器学习 深度学习 域名检测
下载PDF
基于改进GAN的恶意域名数据增强
3
作者 傅伟 钱丽萍 朱晓慧 《计算机应用与软件》 北大核心 2022年第3期308-315,共8页
近年来以恶意域名为依托的网络攻击事件频发。针对主流检测方法识别DGA(Domain Generation Algorithm)变体域名面临的训练数据受限和时效性不足问题,提出一种基于改进WGAN模型的伪DGA域名生成方法。将skip-gram和WGAN结合,通过skip-gra... 近年来以恶意域名为依托的网络攻击事件频发。针对主流检测方法识别DGA(Domain Generation Algorithm)变体域名面临的训练数据受限和时效性不足问题,提出一种基于改进WGAN模型的伪DGA域名生成方法。将skip-gram和WGAN结合,通过skip-gram完成域名有效转换,WGAN模型深度挖掘数据编码中包含的特征,学习并生成伪DGA域名。为验证模型生成数据的有效性,采用多种机器学习方法对生成的域名进行有效性评估。实验结果表明,基于此模型生成的数据具备原数据的特性,可以模拟真实域名用于扩充恶意域名数据集,缓解现有域名检测算法中缺乏DGA变体域名的问题。 展开更多
关键词 恶意域名 数据增强 域名生成算法 字符嵌入 生成对抗网络 检测
下载PDF
基于MLP深度学习算法的DGA准确识别技术研究 被引量:2
4
作者 王辉 周忠锦 +1 位作者 王世晋 史卓颖 《信息安全研究》 2019年第6期495-499,共5页
传统的DGA攻击检测方法已经无法满足对不断变种的DGA域名的识别,检出准确率较低.因此主要研究一种基于MLP深度学习算法的DGA准确识别技术,通过已有的DGA样本数据集,提取多维度的特征向量信息,通过归一化、降维处理后,将特征向量输入MLP... 传统的DGA攻击检测方法已经无法满足对不断变种的DGA域名的识别,检出准确率较低.因此主要研究一种基于MLP深度学习算法的DGA准确识别技术,通过已有的DGA样本数据集,提取多维度的特征向量信息,通过归一化、降维处理后,将特征向量输入MLP多层感知器进行训练,MLP多层感知器主要由输入层、隐藏层和输出层组成,训练后生成模型文件即可载入用于判断待检测的域名是否为DGA域名,可以有效提升DGA检测识别的准确度. 展开更多
关键词 域名生成算法(DGA) 多层感知器(MLP) C&C服务器 隐藏层 奇异值分解算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部