领域适应学习是一种新颖的解决先验信息缺少的模式分类问题的有效方法,最大化地缩小领域间样本分布差是领域适应学习成功的关键因素之一,而仅考虑领域间分布均值差最小化,使得在具体领域适应学习问题上存在一定的局限性.对此,在某个再生...领域适应学习是一种新颖的解决先验信息缺少的模式分类问题的有效方法,最大化地缩小领域间样本分布差是领域适应学习成功的关键因素之一,而仅考虑领域间分布均值差最小化,使得在具体领域适应学习问题上存在一定的局限性.对此,在某个再生核Hilbert空间,在充分考虑领域间分布的均值差和散度差最小化的基础上,基于结构风险最小化模型,提出一种领域适应核支持向量学习机(Kernel support vector machine for domain adaptation,DAKSVM)及其最小平方范式,人造和实际数据集实验结果显示,所提方法具有优化或可比较的模式分类性能。展开更多
生成适应模型利用生成对抗网络实现模型结构,并在领域适应学习上取得了突破.但其部分网络结构缺少信息交互,且仅使用对抗学习不足以完全减小域间距离,从而使分类精度受到影响.为此,提出一种基于生成对抗网络的无监督域适应分类模型(Unsu...生成适应模型利用生成对抗网络实现模型结构,并在领域适应学习上取得了突破.但其部分网络结构缺少信息交互,且仅使用对抗学习不足以完全减小域间距离,从而使分类精度受到影响.为此,提出一种基于生成对抗网络的无监督域适应分类模型(Unsupervised Domain Adaptation classification model based on GAN,UDAG).该模型通过联合使用生成对抗网络和多核最大均值差异度量准则优化域间差异,并充分利用无监督对抗训练及监督分类训练之间的信息传递以学习源域分布和目标域分布之间的共享特征.通过在四种域适应情况下的实验结果表明,UDAG模型学习到更优的共享特征嵌入并实现了域适应图像分类,且分类精度有明显提高.展开更多
最大均值差异(Maximum mean discrepancy,MMD)作为一种能有效度量源域和目标域分布差异的标准已被成功运用.然而,MMD作为一种全局度量方法一定程度上反映的是区域之间全局分布和全局结构上的差异.为此,本文通过引入局部加权均值的方法...最大均值差异(Maximum mean discrepancy,MMD)作为一种能有效度量源域和目标域分布差异的标准已被成功运用.然而,MMD作为一种全局度量方法一定程度上反映的是区域之间全局分布和全局结构上的差异.为此,本文通过引入局部加权均值的方法和理论到MMD中,提出一种具有局部保持能力的投影最大局部加权均值差异(Projected maximum local weighted mean discrepancy,PMLWD)度量,结合传统的学习理论提出基于局部加权均值的领域适应学习框架(Local weighted mean based domain adaptation learning framework,LDAF),在LDAF框架下,衍生出两种领域适应学习方法:LDAF MLC和LDAF SVM.最后,通过测试人工数据集、高维文本数据集和人脸数据集来表明LDAF比其他领域适应学习方法更具优势.展开更多
针对领域适应学习(Domain adaptation learning,DAL)问题,提出一种核分布一致局部领域适应学习机(Kernel distribution consistency based local domaina daptation classifier,KDC-LDAC),在某个通用再生核Hilbert空间(Universally repr...针对领域适应学习(Domain adaptation learning,DAL)问题,提出一种核分布一致局部领域适应学习机(Kernel distribution consistency based local domaina daptation classifier,KDC-LDAC),在某个通用再生核Hilbert空间(Universally reproduced kernel Hilbert space,URKHS),基于结构风险最小化模型,KDC-LDAC首先学习一个核分布一致正则化支持向量机(Support vector machine,SVM),对目标数据进行初始划分;然后,基于核局部学习思想,对目标数据类别信息进行局部回归重构;最后,利用学习获得的类别信息,在目标领域训练学习一个适于目标判别的分类器.人造和实际数据集实验结果显示,所提方法具有优化或可比较的领域适应学习性能.展开更多
文摘领域适应学习是一种新颖的解决先验信息缺少的模式分类问题的有效方法,最大化地缩小领域间样本分布差是领域适应学习成功的关键因素之一,而仅考虑领域间分布均值差最小化,使得在具体领域适应学习问题上存在一定的局限性.对此,在某个再生核Hilbert空间,在充分考虑领域间分布的均值差和散度差最小化的基础上,基于结构风险最小化模型,提出一种领域适应核支持向量学习机(Kernel support vector machine for domain adaptation,DAKSVM)及其最小平方范式,人造和实际数据集实验结果显示,所提方法具有优化或可比较的模式分类性能。
文摘领域适应(或跨领域)学习旨在利用源领域(或辅助领域)中带标签样本来学习一种鲁棒的目标分类器,其关键问题在于如何最大化地减小领域间的分布差异.为了有效解决领域间特征分布的变化问题,提出一种三段式多核局部领域适应学习(multiple kernel local leaning-based domain adaptation,简称MKLDA)方法:1)基于最大均值差(maximum mean discrepancy,简称MMD)度量准则和结构风险最小化模型,同时,学习一个再生多核Hilbert空间和一个初始的支持向量机(support vector machine,简称SVM),对目标领域数据进行初始划分;2)在习得的多核Hilbert空间,对目标领域数据的类别信息进行局部重构学习;3)最后,利用学习获得的类别信息,在目标领域训练学习一个鲁棒的目标分类器.实验结果显示,所提方法具有优化或可比较的领域适应学习性能.
文摘生成适应模型利用生成对抗网络实现模型结构,并在领域适应学习上取得了突破.但其部分网络结构缺少信息交互,且仅使用对抗学习不足以完全减小域间距离,从而使分类精度受到影响.为此,提出一种基于生成对抗网络的无监督域适应分类模型(Unsupervised Domain Adaptation classification model based on GAN,UDAG).该模型通过联合使用生成对抗网络和多核最大均值差异度量准则优化域间差异,并充分利用无监督对抗训练及监督分类训练之间的信息传递以学习源域分布和目标域分布之间的共享特征.通过在四种域适应情况下的实验结果表明,UDAG模型学习到更优的共享特征嵌入并实现了域适应图像分类,且分类精度有明显提高.
文摘最大均值差异(Maximum mean discrepancy,MMD)作为一种能有效度量源域和目标域分布差异的标准已被成功运用.然而,MMD作为一种全局度量方法一定程度上反映的是区域之间全局分布和全局结构上的差异.为此,本文通过引入局部加权均值的方法和理论到MMD中,提出一种具有局部保持能力的投影最大局部加权均值差异(Projected maximum local weighted mean discrepancy,PMLWD)度量,结合传统的学习理论提出基于局部加权均值的领域适应学习框架(Local weighted mean based domain adaptation learning framework,LDAF),在LDAF框架下,衍生出两种领域适应学习方法:LDAF MLC和LDAF SVM.最后,通过测试人工数据集、高维文本数据集和人脸数据集来表明LDAF比其他领域适应学习方法更具优势.