Herein,an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which in-cludes wavelength division multiplexing(WDM),polarization division multiplexing(PDM),space division mul...Herein,an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which in-cludes wavelength division multiplexing(WDM),polarization division multiplexing(PDM),space division multiplexing(SDM),mode division multiplexing(MDM)and orbital angular momentum multiplexing(OAMM).Multiplexing is a mech-anism by which multiple signals are combined into a shared channel used to showcase the maximum capacity of the op-tical links.However,it is critical to develop hybrid multiplexing methods to allow enhanced channel numbers.In this re-view,we have also included hybrid multiplexing techniques such as WDM-PDM,WDM-MDM and PDM-MDM.It is prob-able to attain N×M channels by utilizing N wavelengths and M guided-modes by simply utilizing hybrid WDM-MDM(de)multiplexers.To the best of our knowledge,this review paper is one of its kind which has highlighted the most prom-inent and recent signs of progress in multiplexing techniques in one place.展开更多
To overcome the capacity crunch of optical communications based on the traditional single-mode fiber(SMF), different modes in a few-mode fiber(FMF) can be employed for mode division multiplexing(MDM). MDM can also be ...To overcome the capacity crunch of optical communications based on the traditional single-mode fiber(SMF), different modes in a few-mode fiber(FMF) can be employed for mode division multiplexing(MDM). MDM can also be extended to photonic integration for obtaining improved density and efficiency, as well as interconnection capacity. Therefore, MDM becomes the most promising method for maintaining the trend of "Moore’s law" in photonic integration and optical fiber transmission. In this tutorial, we provide a review of MDM works and cutting-edge progresses from photonic integration to optical fiber transmission, including our recent works of MDM low-noise amplification, FMF fiber design, MDM Si photonic devices, and so on. Research and application challenges of MDM for optical communications regarding long-haul transmission and short reach interconnection are discussed as well. The content is expected to be of important value for both academic researchers and industrial engineers during the development of next-generation optical communication systems,from photonic chips to fiber links.展开更多
Optical vortices carrying orbital angular momentum(OAM)have attracted increasing interest in recent years.Optical vortices have seen a variety of emerging applications in optical manipulation,optical trapping,optical ...Optical vortices carrying orbital angular momentum(OAM)have attracted increasing interest in recent years.Optical vortices have seen a variety of emerging applications in optical manipulation,optical trapping,optical tweezers,optical vortex knots,imaging,microscopy,sensing,metrology,quantum information processing,and optical communications.In various optical vortices enabled applications,the generation of multiple optical vortices is of great importance.In this review article,we focus on the methods of multiple optical vortices generation and its applications.We review the methods for generating multiple optical vortices in three cases,i.e.,1-to-N collinear OAM modes,1-to-N OAM mode array and N-to-N collinear OAM modes.Diverse applications of multiple OAM modes in optical communications and non-communication areas are presented.Future trends,perspectives and opportunities are also discussed.展开更多
We experimentally transmit eight wavelength-division-multiplexing(WDM)channels,16 quadratic-amplitude-modulation(QAM)signals at 32-GBaud,over 1000 km few mode fiber(FMF).In this experiment,we use WDM,mode division mul...We experimentally transmit eight wavelength-division-multiplexing(WDM)channels,16 quadratic-amplitude-modulation(QAM)signals at 32-GBaud,over 1000 km few mode fiber(FMF).In this experiment,we use WDM,mode division multiplexing,and polarization multiplexing for signal transmission.Through the multiple-input-multiple-output(MIMO)equalization algorithms,we achieve the total line transmission rate of 4.096 Tbit/s.The results prove that the bit error rates(BERs)for the16QAM signals after 1000 km FMF transmission are below the soft-decision forward-error-correction(SD-FEC)threshold of2.4×10^(-2),and the net rate reaches 3.413 Tbit/s.Our proposed system provides a reference for the future development of high-capacity communication.展开更多
The mode-division multiplexing technique combined with a few-mode erbium-doped fiber amplifier(FM-EDFA)demonstrates significant potential for solving the capacity limitation of standard single-mode fiber(SSMF)transmis...The mode-division multiplexing technique combined with a few-mode erbium-doped fiber amplifier(FM-EDFA)demonstrates significant potential for solving the capacity limitation of standard single-mode fiber(SSMF)transmission systems.However,the differential mode gain(DMG)arising in the FM-EDFA fundamentally limits its transmission capacity and length.Herein,an innovative DMG equalization strategy using femtosecond laser micromachining to adjust the refractive index(RI)is presented.Variable mode-dependent attenuations can be achieved according to the DMG profile of the FM-EDFA,enabling DMG equalization.To validate the proposed strategy,DMG equalization of the commonly used FM-EDFA configuration was investigated.Simulation results revealed that by optimizing both the length and RI modulation depth of the femtosecond laser-tailoring area,the maximum DMG(DMGmax)among the 3 linear-polarized(LP)mode-group was mitigated from 10 dB to 1.52 dB,whereas the average DMG(DMGave)over the C-band was reduced from 8.95 dB to 0.78 dB.Finally,a 2-LP mode-group DMG equalizer was experimentally demonstrated,resulting in a reduction of the DMGmax from 2.09 dB to 0.46 dB,and a reduction of DMGave over the C band from 1.64 dB to 0.26 dB,with only a 1.8 dB insertion loss.Moreover,a maximum range of variable DMG equalization was achieved with 5.4 dB,satisfying the requirements of the most commonly used 2-LP mode-group amplification scenarios.展开更多
All-fiber few-mode erbium-doped fiber amplifiers(FM-EDFAs) with isolation and wavelength division multiplexers(IWDMs)have been developed to enable flexible pumping in different directions. The FM-EDFA can achieve >...All-fiber few-mode erbium-doped fiber amplifiers(FM-EDFAs) with isolation and wavelength division multiplexers(IWDMs)have been developed to enable flexible pumping in different directions. The FM-EDFA can achieve >30 d B modal gain with<0.3 d B differential modal gain(DMG). We experimentally simulate the DMG performance of a cascade FM-EDFA system using the equivalent spectrum method. The overall DMG reaches 1.84 d B after 10-stage amplification. We also build a recirculating loop to simulate the system, and the developed FM-EDFA can support transmission up to 3270 km within a 2 d B overall DMG by optimizing the few-mode fiber length in the loop.展开更多
The design, fabrication and characterization of a fundamental/first-order mode converter based on mul- timode interference coupler on InP substrate were reported. Detailed optimization of the device parameters were in...The design, fabrication and characterization of a fundamental/first-order mode converter based on mul- timode interference coupler on InP substrate were reported. Detailed optimization of the device parameters were investigated using 3D beam propagation method. In the experiments, the fabricated mode converter realized mode conversion from the fundamental mode to the first-order mode in the wavelength range of 1530-1565 nm with ex- cess loss less than 3 dB. Moreover, LPol and LP11 fiber modes were successfully excited from a few-mode fiber by using the device. This InP-based mode converter can be a possible candidate for integrated transceivers for future mode-division multiplexing system.展开更多
基金financially supported by the Russian Foundation for Basic Research(grant No.18-29-20045)for WDM,MDM and hybrid WDM-MDM,WDM-PDM sectionsthe Russian Science Foundation(grant No.21-79-20075)for PDM,OAMM and hybrid PDM-MDM sectionsthe Ministry of Science and Higher Education of the Russian Federation under the FSRC"Crystallography and Photonics"of the Russian Academy of Sciences(the state task No.007-GZ/Ch3363/26)for comparative analysis.
文摘Herein,an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which in-cludes wavelength division multiplexing(WDM),polarization division multiplexing(PDM),space division multiplexing(SDM),mode division multiplexing(MDM)and orbital angular momentum multiplexing(OAMM).Multiplexing is a mech-anism by which multiple signals are combined into a shared channel used to showcase the maximum capacity of the op-tical links.However,it is critical to develop hybrid multiplexing methods to allow enhanced channel numbers.In this re-view,we have also included hybrid multiplexing techniques such as WDM-PDM,WDM-MDM and PDM-MDM.It is prob-able to attain N×M channels by utilizing N wavelengths and M guided-modes by simply utilizing hybrid WDM-MDM(de)multiplexers.To the best of our knowledge,this review paper is one of its kind which has highlighted the most prom-inent and recent signs of progress in multiplexing techniques in one place.
基金supported by the National Key R&D Program of China (No. 2018YFB1801804)the National Natural Science Foundation of China (NSFC) (Nos. 61935011, 61875124, and 61675128)
文摘To overcome the capacity crunch of optical communications based on the traditional single-mode fiber(SMF), different modes in a few-mode fiber(FMF) can be employed for mode division multiplexing(MDM). MDM can also be extended to photonic integration for obtaining improved density and efficiency, as well as interconnection capacity. Therefore, MDM becomes the most promising method for maintaining the trend of "Moore’s law" in photonic integration and optical fiber transmission. In this tutorial, we provide a review of MDM works and cutting-edge progresses from photonic integration to optical fiber transmission, including our recent works of MDM low-noise amplification, FMF fiber design, MDM Si photonic devices, and so on. Research and application challenges of MDM for optical communications regarding long-haul transmission and short reach interconnection are discussed as well. The content is expected to be of important value for both academic researchers and industrial engineers during the development of next-generation optical communication systems,from photonic chips to fiber links.
基金the National Natural Science Foundation of China(NSFC)(Grant Nos.11574001,61761130082,11774116 and 11274131)the National Basic Research Program of China(973 Program)(No.2014CB340004)+4 种基金the Royal Society-Newton Advanced Fellowshipthe National Program for Support of Top-notch Young Professionalsthe Yangtze River Excellent Young Scholars Programthe Natural Science Foundation of Hubei Province of China(No.2018CFA048)the Program for HUST Academic Frontier Youth Team(No.2016QYTD05).
文摘Optical vortices carrying orbital angular momentum(OAM)have attracted increasing interest in recent years.Optical vortices have seen a variety of emerging applications in optical manipulation,optical trapping,optical tweezers,optical vortex knots,imaging,microscopy,sensing,metrology,quantum information processing,and optical communications.In various optical vortices enabled applications,the generation of multiple optical vortices is of great importance.In this review article,we focus on the methods of multiple optical vortices generation and its applications.We review the methods for generating multiple optical vortices in three cases,i.e.,1-to-N collinear OAM modes,1-to-N OAM mode array and N-to-N collinear OAM modes.Diverse applications of multiple OAM modes in optical communications and non-communication areas are presented.Future trends,perspectives and opportunities are also discussed.
基金supported by the National Key R&D Program of China(No.2018YFB1800905)the National Natural Science Foundation of China(Nos.61935005,61720106015,61835002,and 62127802)。
文摘We experimentally transmit eight wavelength-division-multiplexing(WDM)channels,16 quadratic-amplitude-modulation(QAM)signals at 32-GBaud,over 1000 km few mode fiber(FMF).In this experiment,we use WDM,mode division multiplexing,and polarization multiplexing for signal transmission.Through the multiple-input-multiple-output(MIMO)equalization algorithms,we achieve the total line transmission rate of 4.096 Tbit/s.The results prove that the bit error rates(BERs)for the16QAM signals after 1000 km FMF transmission are below the soft-decision forward-error-correction(SD-FEC)threshold of2.4×10^(-2),and the net rate reaches 3.413 Tbit/s.Our proposed system provides a reference for the future development of high-capacity communication.
基金supported by the National Natural Science Foundation of China(62305071)China Postdoctoral Science Foundation(2023M740747)Guangdong Introducing Innovative and Entrepreneurial Teams of“The Pearl River Talent Recruitment Program”(2021ZT09X044).
文摘The mode-division multiplexing technique combined with a few-mode erbium-doped fiber amplifier(FM-EDFA)demonstrates significant potential for solving the capacity limitation of standard single-mode fiber(SSMF)transmission systems.However,the differential mode gain(DMG)arising in the FM-EDFA fundamentally limits its transmission capacity and length.Herein,an innovative DMG equalization strategy using femtosecond laser micromachining to adjust the refractive index(RI)is presented.Variable mode-dependent attenuations can be achieved according to the DMG profile of the FM-EDFA,enabling DMG equalization.To validate the proposed strategy,DMG equalization of the commonly used FM-EDFA configuration was investigated.Simulation results revealed that by optimizing both the length and RI modulation depth of the femtosecond laser-tailoring area,the maximum DMG(DMGmax)among the 3 linear-polarized(LP)mode-group was mitigated from 10 dB to 1.52 dB,whereas the average DMG(DMGave)over the C-band was reduced from 8.95 dB to 0.78 dB.Finally,a 2-LP mode-group DMG equalizer was experimentally demonstrated,resulting in a reduction of the DMGmax from 2.09 dB to 0.46 dB,and a reduction of DMGave over the C band from 1.64 dB to 0.26 dB,with only a 1.8 dB insertion loss.Moreover,a maximum range of variable DMG equalization was achieved with 5.4 dB,satisfying the requirements of the most commonly used 2-LP mode-group amplification scenarios.
基金supported by the National Natural Science Foundation of China (No. 62171078)the National Key R&D Program of China (No. 2018YFB1801003)。
文摘All-fiber few-mode erbium-doped fiber amplifiers(FM-EDFAs) with isolation and wavelength division multiplexers(IWDMs)have been developed to enable flexible pumping in different directions. The FM-EDFA can achieve >30 d B modal gain with<0.3 d B differential modal gain(DMG). We experimentally simulate the DMG performance of a cascade FM-EDFA system using the equivalent spectrum method. The overall DMG reaches 1.84 d B after 10-stage amplification. We also build a recirculating loop to simulate the system, and the developed FM-EDFA can support transmission up to 3270 km within a 2 d B overall DMG by optimizing the few-mode fiber length in the loop.
基金Project supported by the National Basic Research Program of China(No.2014CB340102)the National Natural Science Foundation of China(Nos.61274045,61335009)
文摘The design, fabrication and characterization of a fundamental/first-order mode converter based on mul- timode interference coupler on InP substrate were reported. Detailed optimization of the device parameters were investigated using 3D beam propagation method. In the experiments, the fabricated mode converter realized mode conversion from the fundamental mode to the first-order mode in the wavelength range of 1530-1565 nm with ex- cess loss less than 3 dB. Moreover, LPol and LP11 fiber modes were successfully excited from a few-mode fiber by using the device. This InP-based mode converter can be a possible candidate for integrated transceivers for future mode-division multiplexing system.