Based on hourly precipitation data in eastern China in the warm season during 1961-2000,spatial distributions of frequency for 20 mm h 1 and 50 mm h 1 precipitation were analyzed,and the criteria of short-duration rai...Based on hourly precipitation data in eastern China in the warm season during 1961-2000,spatial distributions of frequency for 20 mm h 1 and 50 mm h 1 precipitation were analyzed,and the criteria of short-duration rainfall events and severe rainfall events are discussed.Furthermore,the percentile method was used to define local hourly extreme precipitation;based on this,diurnal variations and trends in extreme precipitation were further studied.The results of this study show that,over Yunnan,South China,North China,and Northeast China,the most frequent extreme precipitation events occur most frequently in late afternoon and/or early evening.In the Guizhou Plateau and the Sichuan Basin,the maximum frequency of extreme precipitation events occurs in the late night and/or early morning.And in the western Sichuan Plateau,the maximum frequency occurs in the middle of the night.The frequency of extreme precipitation (based on hourly rainfall measurements) has increased in most parts of eastern China,especially in Northeast China and the middle and lower reaches of the Yangtze River,but precipitation has decreased significantly in North China in the past 50 years.In addition,stations in the Guizhou Plateau and the middle and lower reaches of the Yangtze River exhibit significant increasing trends in hourly precipitation extremes during the nighttime more than during the daytime.展开更多
The climatological distribution of mesoscale convective systems (MCSs) over China and its vicinity during summer is statistically analyzed, based on the 10-year (1996―2006, 2004 excluded) June-August infrared TBB (Te...The climatological distribution of mesoscale convective systems (MCSs) over China and its vicinity during summer is statistically analyzed, based on the 10-year (1996―2006, 2004 excluded) June-August infrared TBB (Temperature of black body) dataset. Comparing the results obtained in this paper with the distribution of thunderstorms from surface meteorological stations over China and the distribution of lightning from low-orbit satellites over China and its vicinity in the previous studies, we find that the statistic characteristics of TBB less than -52℃ can better represent the spatiotemporal distribution of MCSs over China and its vicinity during summer.The spreading pattern of the MCSs over this region shows three transmeridional bands of active MCSs, with obvious fluctuation of active MCSs in the band near 30°N. It can be explained by the atmospheric circulation that the three bands of active MCSs are associated with each other by the summer monsoon over East Asia. We focus on the diurnal variations of MCSs over different underlying surfaces, and the result shows that there are two types of MCSs over China and its vicinity during summer. One type of MCSs has only one active period all day long (single-peak MCSs), and the other has multiple active periods (multi-peak MCSs). Single-peak MCSs occur more often over plateaus or mountains, and multi-peak MCSs are more common over plains or basins. Depending on lifetimes and active periods, single-peak MCSs can be classified as Tibetan Plateau MCSs, general mountain MCSs, Ryukyu MCSs, and so on. The diurnal variation of multi-peak MCSs is very similar to that of MCCs (mesoscale convective complexes), and it reveals that multi-peak MCSs has longer life cycle and larger horizontal scale, becomes weaker after sunset, and develops again after midnight. Tibetan Plateau MCSs and general mountain MCSs both usually develop in the afternoon, but Tibetan Plateau MCSs have longer life cycle and more active MαCSs. Ryukyu MCSs generally develop after midnight, last longer t展开更多
The aerosol number concentration and size distribution were measured with the newly developed Wide-range Particle Spectrometer in summer and winter of 2006 at the urban site of Jinan City. Here reported the characteri...The aerosol number concentration and size distribution were measured with the newly developed Wide-range Particle Spectrometer in summer and winter of 2006 at the urban site of Jinan City. Here reported the characteristics of fine particles of the different observation seasons. Relative high number concentrations for the particles in the diameter range of 10-500 nm were observed in both seasons. It was found that the dominant number distributed in particle diameter smaller than 100 nm and the percentage over the number concentration of all air particles is much higher than what has been measured in other urban sites over the world. The number mean diameter in summer was much smaller than in winter, strongly suggesting the different origin of ultrafine particles in different seasons. That is, particles in ultrafine mode mainly came from nucleation and new particle formation in summer while from traffic emission in winter. The diurnal variation also supported this point. Number concentration in the diameter range of 10-200 um got their peak values at noontime, well correlated with the mixing ratio of SO2 and the intensity of solar radiation in summer. While in winter, those in the same diameter range showed the main peaks during the traffic hours happened in the morning and evening.展开更多
Based on the high-density hourly rain-gauge data from 265 stations over the Qilian Mountains in Northwest China,climatic mean diurnal variations of summer rainfall over different topographies of this area are investig...Based on the high-density hourly rain-gauge data from 265 stations over the Qilian Mountains in Northwest China,climatic mean diurnal variations of summer rainfall over different topographies of this area are investigated. Influences of the gauge elevations on the diurnal variation of rainfall are also revealed. Distinct regional features of diurnal variations in rainfall are observed over the Qilian Mountains. Rainfall over the Qinghai Lake areas shows a single nocturnal peak. A dominant, late-afternoon peak of rainfall occurs over the mountain tops. Over the northeastern and southeastern slopes, a dominant diurnal peak appears in the late afternoon, and an evident second peak is found in the early morning, respectively. The strengths of the early-morning peaks in the rainfall frequency are closely related to the rainfall events with different durations over the two slopes. The early-morning peak is dominant across plains with low elevations. From the mountain tops to the plains, the diurnal peaks of rainfall gradually vary from the dominant late-afternoon peak to the dominant early-morning peak with the enhanced early-morning peak in concurrent with the decreasing gauge elevation over the northeastern and southeastern slopes. Further examination indicates that the rainfall at higher elevations over the northeastern and southeastern slopes occurs more readily in the afternoon,compared to the lower elevations. This phenomenon corresponds to the result that the proportion of the rainfall frequency occurring during the early-morning period decreases with increasing elevations over the two slopes.展开更多
The concentration, distribution, size-fraction structure and diurnal variation of phyto-plankton biomass ( chl α) in the Taiwan Strait were investigated during four cruises conducted in the summer (August) of 1997, 1...The concentration, distribution, size-fraction structure and diurnal variation of phyto-plankton biomass ( chl α) in the Taiwan Strait were investigated during four cruises conducted in the summer (August) of 1997, 1998, 1999 and winter (February-March) of 1998, respectively. The results showed that phytoplankton biomass in the Taiwan Strait was largely influenced by water masses and up-welling, high biomass mainly occurred at the frontal zones. Nano-and pico-phytoplankton dominated the phytoplankton biomass and primary productivity in the Taiwan Strait, they contributed 60% - 80% to biomass and 80% to primary productivity. But size-fractionated phytoplankton biomass was quite different in the northern Taiwan Strait (NTS) and southern Taiwan Strait (STS), and varied significantly annually. Diurnal variation of chl α concentration in the water column and water layers indicated that phytoplankton biomass at most stations had one-day variation cycle, with some difference, which coincide with the tidal rhythm. The diurnal variation of the size-fractionated structure of phytoplankton biomass was strongly influenced by the hydrodynamics and grazing pressure of zooplankton. This study also showed that unusual phenomena observed in phytoplankton biomass during the investigating periods might be the biological response to ENSO events.展开更多
基金supported by the R & D Special Fund for Public Welfare Industry (meteorology)(GYHY201106018)National Key Program for Developing Basic Sciences (Grant No. 2006CB400503)
文摘Based on hourly precipitation data in eastern China in the warm season during 1961-2000,spatial distributions of frequency for 20 mm h 1 and 50 mm h 1 precipitation were analyzed,and the criteria of short-duration rainfall events and severe rainfall events are discussed.Furthermore,the percentile method was used to define local hourly extreme precipitation;based on this,diurnal variations and trends in extreme precipitation were further studied.The results of this study show that,over Yunnan,South China,North China,and Northeast China,the most frequent extreme precipitation events occur most frequently in late afternoon and/or early evening.In the Guizhou Plateau and the Sichuan Basin,the maximum frequency of extreme precipitation events occurs in the late night and/or early morning.And in the western Sichuan Plateau,the maximum frequency occurs in the middle of the night.The frequency of extreme precipitation (based on hourly rainfall measurements) has increased in most parts of eastern China,especially in Northeast China and the middle and lower reaches of the Yangtze River,but precipitation has decreased significantly in North China in the past 50 years.In addition,stations in the Guizhou Plateau and the middle and lower reaches of the Yangtze River exhibit significant increasing trends in hourly precipitation extremes during the nighttime more than during the daytime.
基金the National Major Basic Research "973" Program of China (Grant No. 2004CB418300)the National Natural Science Foundation of China (Grant No. 40305004)
文摘The climatological distribution of mesoscale convective systems (MCSs) over China and its vicinity during summer is statistically analyzed, based on the 10-year (1996―2006, 2004 excluded) June-August infrared TBB (Temperature of black body) dataset. Comparing the results obtained in this paper with the distribution of thunderstorms from surface meteorological stations over China and the distribution of lightning from low-orbit satellites over China and its vicinity in the previous studies, we find that the statistic characteristics of TBB less than -52℃ can better represent the spatiotemporal distribution of MCSs over China and its vicinity during summer.The spreading pattern of the MCSs over this region shows three transmeridional bands of active MCSs, with obvious fluctuation of active MCSs in the band near 30°N. It can be explained by the atmospheric circulation that the three bands of active MCSs are associated with each other by the summer monsoon over East Asia. We focus on the diurnal variations of MCSs over different underlying surfaces, and the result shows that there are two types of MCSs over China and its vicinity during summer. One type of MCSs has only one active period all day long (single-peak MCSs), and the other has multiple active periods (multi-peak MCSs). Single-peak MCSs occur more often over plateaus or mountains, and multi-peak MCSs are more common over plains or basins. Depending on lifetimes and active periods, single-peak MCSs can be classified as Tibetan Plateau MCSs, general mountain MCSs, Ryukyu MCSs, and so on. The diurnal variation of multi-peak MCSs is very similar to that of MCCs (mesoscale convective complexes), and it reveals that multi-peak MCSs has longer life cycle and larger horizontal scale, becomes weaker after sunset, and develops again after midnight. Tibetan Plateau MCSs and general mountain MCSs both usually develop in the afternoon, but Tibetan Plateau MCSs have longer life cycle and more active MαCSs. Ryukyu MCSs generally develop after midnight, last longer t
基金Project supported by the National Basic Research Project(973)of China(No.2005CB422203)the National Post-Doctor Foundation of China(No.20060390990).
文摘The aerosol number concentration and size distribution were measured with the newly developed Wide-range Particle Spectrometer in summer and winter of 2006 at the urban site of Jinan City. Here reported the characteristics of fine particles of the different observation seasons. Relative high number concentrations for the particles in the diameter range of 10-500 nm were observed in both seasons. It was found that the dominant number distributed in particle diameter smaller than 100 nm and the percentage over the number concentration of all air particles is much higher than what has been measured in other urban sites over the world. The number mean diameter in summer was much smaller than in winter, strongly suggesting the different origin of ultrafine particles in different seasons. That is, particles in ultrafine mode mainly came from nucleation and new particle formation in summer while from traffic emission in winter. The diurnal variation also supported this point. Number concentration in the diameter range of 10-200 um got their peak values at noontime, well correlated with the mixing ratio of SO2 and the intensity of solar radiation in summer. While in winter, those in the same diameter range showed the main peaks during the traffic hours happened in the morning and evening.
基金Supported by the National Natural Science Foundation of China(41675075,91637210,and 41375004)
文摘Based on the high-density hourly rain-gauge data from 265 stations over the Qilian Mountains in Northwest China,climatic mean diurnal variations of summer rainfall over different topographies of this area are investigated. Influences of the gauge elevations on the diurnal variation of rainfall are also revealed. Distinct regional features of diurnal variations in rainfall are observed over the Qilian Mountains. Rainfall over the Qinghai Lake areas shows a single nocturnal peak. A dominant, late-afternoon peak of rainfall occurs over the mountain tops. Over the northeastern and southeastern slopes, a dominant diurnal peak appears in the late afternoon, and an evident second peak is found in the early morning, respectively. The strengths of the early-morning peaks in the rainfall frequency are closely related to the rainfall events with different durations over the two slopes. The early-morning peak is dominant across plains with low elevations. From the mountain tops to the plains, the diurnal peaks of rainfall gradually vary from the dominant late-afternoon peak to the dominant early-morning peak with the enhanced early-morning peak in concurrent with the decreasing gauge elevation over the northeastern and southeastern slopes. Further examination indicates that the rainfall at higher elevations over the northeastern and southeastern slopes occurs more readily in the afternoon,compared to the lower elevations. This phenomenon corresponds to the result that the proportion of the rainfall frequency occurring during the early-morning period decreases with increasing elevations over the two slopes.
基金This work was supported by a grant from NSFC(No.49636220,49776308)a grant from the Fujian Commission of Science and Thechnology(98-Z-179)
文摘The concentration, distribution, size-fraction structure and diurnal variation of phyto-plankton biomass ( chl α) in the Taiwan Strait were investigated during four cruises conducted in the summer (August) of 1997, 1998, 1999 and winter (February-March) of 1998, respectively. The results showed that phytoplankton biomass in the Taiwan Strait was largely influenced by water masses and up-welling, high biomass mainly occurred at the frontal zones. Nano-and pico-phytoplankton dominated the phytoplankton biomass and primary productivity in the Taiwan Strait, they contributed 60% - 80% to biomass and 80% to primary productivity. But size-fractionated phytoplankton biomass was quite different in the northern Taiwan Strait (NTS) and southern Taiwan Strait (STS), and varied significantly annually. Diurnal variation of chl α concentration in the water column and water layers indicated that phytoplankton biomass at most stations had one-day variation cycle, with some difference, which coincide with the tidal rhythm. The diurnal variation of the size-fractionated structure of phytoplankton biomass was strongly influenced by the hydrodynamics and grazing pressure of zooplankton. This study also showed that unusual phenomena observed in phytoplankton biomass during the investigating periods might be the biological response to ENSO events.