The interplay between topology and magnetism is vital for realizing exotic quantum phenomena,significant examples including quantum anomalous Hall effect,axion insulators,and high-order topological states.These states...The interplay between topology and magnetism is vital for realizing exotic quantum phenomena,significant examples including quantum anomalous Hall effect,axion insulators,and high-order topological states.These states host great potential for future applications in high-speed and low-consumption electronic devices.Despite being extensively investigated,practical platforms are still scarce.In this work,with molecular beam epitaxy(MBE),we provide the first experimental report on high-quality Bi(110)/CrTe_(2) magnetic heterostructure.By employing in-situ high-resolution scanning tunneling microscopy,we are able to examine the interaction between magnetism and topology.There is a potential edge state at an energy level above the Fermi level,but no edge states observed near the Fermi level The absence of high-order topological corner states near EF highlights the importance of lattice matching and interface engineering in designing high-order topological states.Our study provides key insights into the interplay between two-dimensional magnetic and topological materials and offers an important dimension for engineering magnetic topological states.展开更多
文摘The interplay between topology and magnetism is vital for realizing exotic quantum phenomena,significant examples including quantum anomalous Hall effect,axion insulators,and high-order topological states.These states host great potential for future applications in high-speed and low-consumption electronic devices.Despite being extensively investigated,practical platforms are still scarce.In this work,with molecular beam epitaxy(MBE),we provide the first experimental report on high-quality Bi(110)/CrTe_(2) magnetic heterostructure.By employing in-situ high-resolution scanning tunneling microscopy,we are able to examine the interaction between magnetism and topology.There is a potential edge state at an energy level above the Fermi level,but no edge states observed near the Fermi level The absence of high-order topological corner states near EF highlights the importance of lattice matching and interface engineering in designing high-order topological states.Our study provides key insights into the interplay between two-dimensional magnetic and topological materials and offers an important dimension for engineering magnetic topological states.