This paper considers a fault-tolerant control and vibration suppression problem of flexible spacecraft.The attitude dynamics is modeled by an interconnected system,in which the rigid part and the flexible part are cou...This paper considers a fault-tolerant control and vibration suppression problem of flexible spacecraft.The attitude dynamics is modeled by an interconnected system,in which the rigid part and the flexible part are coupled with each other.Such a model allows us to use the interconnected system approach to analyze the flexible spacecraft.Both distributed and decentralized observer-based fault-tolerant control schemes are developed,under which the closed-loop stability of flexible spacecraft can be ensured by using the cycle-small-gain theorem.Compared with the traditional method,this paper considers the faults occurred not only in the rigid parts,but also in the flexible parts.In addition,the application of the interconnected system approach simplifies the system model of flexible spacecraft,thereby the difficulty of theoretical analysis and engineering practice of fault-tolerant control of flexible spacecraft are greatly reduced.Simulation results show the effectiveness of the proposed methods and the comparison of different fault-tolerant control approach.展开更多
The consensus problem of the distributed attitude synchronization in the spacecraft formation flying is considered.Firstly,the attitude dynamics of a rigid body spacecraft is described by modified Rodriguez parameters...The consensus problem of the distributed attitude synchronization in the spacecraft formation flying is considered.Firstly,the attitude dynamics of a rigid body spacecraft is described by modified Rodriguez parameters(MRPs).Then global stable distributed cooperative attitude control laws are proposed for different cases.In the first case,the control law guarantees the state consensus during the attitude synchronization.In the second case,the control law ensures both the attitudes synchronizing to a desired constant attitude and the angular velocities converging at zero.In the third case,an attitude consensus control law with bounded control input is proposed.Finally,the effectiveness and validity of the control laws are demonstrated by simulations of six rigid bodies formation flying.展开更多
基金supported by National Natural Science Foundation of China(Nos.61622304,61773201)Natural Science Foundation of Jiangsu Province,China(No.BK20160035)Fundamental Research Funds for the Central Universities,China(No.NE2015002)。
文摘This paper considers a fault-tolerant control and vibration suppression problem of flexible spacecraft.The attitude dynamics is modeled by an interconnected system,in which the rigid part and the flexible part are coupled with each other.Such a model allows us to use the interconnected system approach to analyze the flexible spacecraft.Both distributed and decentralized observer-based fault-tolerant control schemes are developed,under which the closed-loop stability of flexible spacecraft can be ensured by using the cycle-small-gain theorem.Compared with the traditional method,this paper considers the faults occurred not only in the rigid parts,but also in the flexible parts.In addition,the application of the interconnected system approach simplifies the system model of flexible spacecraft,thereby the difficulty of theoretical analysis and engineering practice of fault-tolerant control of flexible spacecraft are greatly reduced.Simulation results show the effectiveness of the proposed methods and the comparison of different fault-tolerant control approach.
基金supported by the National Science Foundation of China (6097406260972119)the Chinese Ministry of Science and Intergovernmental Cooperation Project(2009DFA12870)
文摘The consensus problem of the distributed attitude synchronization in the spacecraft formation flying is considered.Firstly,the attitude dynamics of a rigid body spacecraft is described by modified Rodriguez parameters(MRPs).Then global stable distributed cooperative attitude control laws are proposed for different cases.In the first case,the control law guarantees the state consensus during the attitude synchronization.In the second case,the control law ensures both the attitudes synchronizing to a desired constant attitude and the angular velocities converging at zero.In the third case,an attitude consensus control law with bounded control input is proposed.Finally,the effectiveness and validity of the control laws are demonstrated by simulations of six rigid bodies formation flying.