期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
面向知识图谱的知识推理研究进展 被引量:169
1
作者 官赛萍 靳小龙 +2 位作者 贾岩涛 王元卓 程学旗 《软件学报》 EI CSCD 北大核心 2018年第10期2966-2994,共29页
近年来,随着互联网技术和应用模式的迅猛发展,引发了互联网数据规模的爆炸式增长,其中包含大量有价值的知识.如何组织和表达这些知识,并对其进行深入计算和分析备受关注.知识图谱作为丰富直观的知识表达方式应运而生.面向知识图谱的知... 近年来,随着互联网技术和应用模式的迅猛发展,引发了互联网数据规模的爆炸式增长,其中包含大量有价值的知识.如何组织和表达这些知识,并对其进行深入计算和分析备受关注.知识图谱作为丰富直观的知识表达方式应运而生.面向知识图谱的知识推理是知识图谱的研究热点之一,已在垂直搜索、智能问答等应用领域发挥了重要作用.面向知识图谱的知识推理旨在根据已有的知识推理出新的知识或识别错误的知识.不同于传统的知识推理,由于知识图谱中知识表达形式的简洁直观、灵活丰富,面向知识图谱的知识推理方法也更加多样化.将从知识推理的基本概念出发,介绍近年来面向知识图谱知识推理方法的最新研究进展.具体地,根据推理类型划分,将面向知识图谱的知识推理分为单步推理和多步推理,根据方法的不同,每类又包括基于规则的推理、基于分布式表示的推理、基于神经网络的推理以及混合推理.详细总结这些方法,并探讨和展望面向知识图谱知识推理的未来研究方向和前景. 展开更多
关键词 知识推理 知识图谱 规则推理 分布式表示 神经网络
下载PDF
Pre-trained models for natural language processing: A survey 被引量:146
2
作者 QIU XiPeng SUN TianXiang +3 位作者 XU YiGe SHAO YunFan DAI Ning HUANG XuanJing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第10期1872-1897,共26页
Recently, the emergence of pre-trained models(PTMs) has brought natural language processing(NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language rep... Recently, the emergence of pre-trained models(PTMs) has brought natural language processing(NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy from four different perspectives. Next,we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks. 展开更多
关键词 deep learning neural network natural language processing pre-trained model distributed representation word embedding self-supervised learning language modelling
原文传递
分布式集群处理环境平台软件技术研究 被引量:5
3
作者 姜晓辉 郭久武 +2 位作者 王博 刘承 崔赛楠 《吉林大学学报(信息科学版)》 CAS 2015年第3期331-337,共7页
针对嵌入式设备资源受限、软件集成困难、通信环境复杂等问题,结合目前车辆综合电子系统、航空综合电子系统等分布式集群处理机环境下信息处理的特点,提出了嵌入式软件构件形态及嵌入式构件化软件集成方法,改进了在分布式集群处理机环... 针对嵌入式设备资源受限、软件集成困难、通信环境复杂等问题,结合目前车辆综合电子系统、航空综合电子系统等分布式集群处理机环境下信息处理的特点,提出了嵌入式软件构件形态及嵌入式构件化软件集成方法,改进了在分布式集群处理机环境下设备之间通信数据的处理方式,并在嵌入式实时操作系统中实施验证。实验结果表明,嵌入式构件化软件平台能实现软件快速集成,有效监控和管理系统资源。 展开更多
关键词 分布式系统 集群处理机 构件化 嵌入式
下载PDF
应用t-SNE算法探讨实验室检查在自身免疫性疾病诊断上临床意义
4
作者 肖瑞平 朱有凯 《中国科技期刊数据库 医药》 2023年第8期59-62,共4页
应用机器学习算法t-SNE(t-Distributed Stochastic Neighbor Embedding)对自身免疫性疾病患者实验室检查数据进行数据分析,探索其中数据结构、数据之间的关系以及在自身免疫性疾病诊断方面的意义。方法 构建以t-SNE为基础的数据分析模型... 应用机器学习算法t-SNE(t-Distributed Stochastic Neighbor Embedding)对自身免疫性疾病患者实验室检查数据进行数据分析,探索其中数据结构、数据之间的关系以及在自身免疫性疾病诊断方面的意义。方法 构建以t-SNE为基础的数据分析模型,以原始实验室检查数据生成的大量高维数据集反复训练模型,确定各种重要参数和实验流程,最终对生成的一系列可视化散点图进行分析,揭示其中包含的信息和知识。结果 本研究建立了可靠性与实用性较强的数据分析模型以及具有临床实践意义的数据分析流程。通过对880例常见自身免疫性疾病病种的数据分析,发现超敏C反应蛋白将所有病例显著地分为两大类;同病种的病例具有明显聚集的数据簇结构,不同病例的数据点有重叠现象;通过比较不同的数据集分析结果,进一步简化了检查项目组合。结论 采用本研究建立的数据分析模型,能够将复杂的临床高维数据集通过计算简化为二维的可视化散点图。通过对散点图上重叠数据点的解析,快速地将疑难病例甄别出来,表明了数据分析模型的可靠性;研究结果表明超敏c反应蛋白可能在自身免疫性疾病的发生发展中具有启动者的作用;简化的检查项目组合也可以取得具有临床诊断价值的结果,在一定程度上节约了医疗资源。 展开更多
关键词 t-SNE(t-distributed STOCHASTIC NEIGHBOR embedding) 自身免疫性疾病 数据分析 超敏C反应蛋白
下载PDF
开放式环境下基于向量表征与计算的动态访问控制 被引量:1
5
作者 王清旭 董理君 +3 位作者 贾伟 刘超 杨光 吴铁军 《计算机科学》 CSCD 北大核心 2022年第S02期727-733,共7页
访问控制是网络安全的基础技术。随着大数据技术与开放式网络的发展,互联网用户的访问行为变得越来越灵活。传统的访问控制机制主要从规则自动生成和规则匹配优化两方面来提升访问控制的工作效率,大多采用遍历匹配机制,存在计算量大、... 访问控制是网络安全的基础技术。随着大数据技术与开放式网络的发展,互联网用户的访问行为变得越来越灵活。传统的访问控制机制主要从规则自动生成和规则匹配优化两方面来提升访问控制的工作效率,大多采用遍历匹配机制,存在计算量大、效率低等问题,难以满足开放式环境下访问控制动态、高效的需求。受人工智能领域中的分布式嵌入技术的启发,提出一种基于向量表征与计算的访问控制的VRCAC(Vector Representation and Computation based Access Control)模型。首先将访问控制规则转化为数值型向量,使得计算机能够以数值计算的方式实现快速的访问判定,用户向量与权限向量的位置关系可用两者的内积值表示,通过比较内积值与关系阈值,可以快速判断用户与权限的关系。此方法降低了访问控制执行的时间复杂度,从而提高了开放式大数据环境下的访问控制的执行效率。最后在两个真实数据集上,采用准确率、误报率等多种评价指标进行了比较实验,验证了所提方法的有效性。 展开更多
关键词 网络安全 访问控制 大数据 分布式表征 向量嵌入
下载PDF
Cryptographic Lightweight Encryption Algorithm with Dimensionality Reduction in Edge Computing
6
作者 D.Jerusha T.Jaya 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期1121-1132,共12页
Edge Computing is one of the radically evolving systems through generations as it is able to effectively meet the data saving standards of consumers,providers and the workers. Requisition for Edge Computing based ite... Edge Computing is one of the radically evolving systems through generations as it is able to effectively meet the data saving standards of consumers,providers and the workers. Requisition for Edge Computing based items havebeen increasing tremendously. Apart from the advantages it holds, there remainlots of objections and restrictions, which hinders it from accomplishing the needof consumers all around the world. Some of the limitations are constraints oncomputing and hardware, functions and accessibility, remote administration andconnectivity. There is also a backlog in security due to its inability to create a trustbetween devices involved in encryption and decryption. This is because securityof data greatly depends upon faster encryption and decryption in order to transferit. In addition, its devices are considerably exposed to side channel attacks,including Power Analysis attacks that are capable of overturning the process.Constrained space and the ability of it is one of the most challenging tasks. Toprevail over from this issue we are proposing a Cryptographic LightweightEncryption Algorithm with Dimensionality Reduction in Edge Computing. Thet-Distributed Stochastic Neighbor Embedding is one of the efficient dimensionality reduction technique that greatly decreases the size of the non-linear data. Thethree dimensional image data obtained from the system, which are connected withit, are dimensionally reduced, and then lightweight encryption algorithm isemployed. Hence, the security backlog can be solved effectively using thismethod. 展开更多
关键词 Edge computing(e.g) dimensionality reduction(dr) t-distributed stochastic neighbor embedding(t-sne) principle component analysis(pca)
下载PDF
小说人物的分布表示及其应用研究
7
作者 贾玉祥 王璐 +3 位作者 刘鹏程 王钤 张岳 昝红英 《中文信息学报》 CSCD 北大核心 2020年第12期92-99,共8页
小说是以刻画人物为中心,通过完整的故事情节和具体的环境描写反映社会生活的一种文学体裁。对小说人物进行建模,是小说文本理解和小说文本挖掘的基础性工作。该文构建了大规模的小说语料库,抽取人物及其依存特征,提出基于skip-gram的... 小说是以刻画人物为中心,通过完整的故事情节和具体的环境描写反映社会生活的一种文学体裁。对小说人物进行建模,是小说文本理解和小说文本挖掘的基础性工作。该文构建了大规模的小说语料库,抽取人物及其依存特征,提出基于skip-gram的人物向量训练方法,以人物为目标,以依存特征为上下文,基于训练出的人物向量,探索了小说人物相似度计算、小说人物聚类分析及小说人物画像等应用。实验结果表明,小说人物的分布表示有较好的应用效果。 展开更多
关键词 小说人物 分布表示 人物向量 人物聚类 人物画像
下载PDF
Light spectrum preference of Nile Tilapia (Oreochromis niloticus) under different hunger levels
8
作者 Guang Jin Jian Zhao +5 位作者 Yadong Zhang Gang Liu Dezhao Liu Songming Zhu Yufang Shao Zhangying Ye 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第5期51-57,共7页
In order to improve the light welfare of Nile tilapia in aquaculture,the influence of hunger level on light spectrum preference of Nile tilapia was explored in this study.The whole experiment was based on the emptying... In order to improve the light welfare of Nile tilapia in aquaculture,the influence of hunger level on light spectrum preference of Nile tilapia was explored in this study.The whole experiment was based on the emptying of the gastrointestinal contents,and carried out under the controlled laboratory conditions.The light spectrum preference was assessed by counting the head location of fish in each experimental tank,which containing seven compartments(i.e.,red,blue,white,yellow,black,green and public area).t-Distributed Stochastic Neighbor Embedding(t-SNE)was adopted to visualize the hunger level-based dynamic preference on light spectrum in two-dimensional space.According to the clustering results,significant differences in light spectrum preferences of Nile tilapia,under the different hunger levels,were indicated.In addition,the average visit frequency in green compartment was significantly lower than that in other color compartments throughout the whole experiment,and the total visit frequency in red compartment was relatively higher during the whole experiment. 展开更多
关键词 light welfare Nile tilapia hunger level light spectrum preference t-distributed Stochastic Neighbor embedding
原文传递
Tsne降维可视化分析及飞蛾火焰优化ELM算法在电力负荷预测中应用 被引量:49
9
作者 张淑清 段晓宁 +4 位作者 张立国 姜安琦 姚玉永 刘勇 穆勇 《中国电机工程学报》 EI CSCD 北大核心 2021年第9期3120-3129,共10页
电力系统的稳定运行具有负荷平衡的强约束性,准确的电力负荷预测在保证电力系统规划与可靠、经济运行方面具有十分重要的意义,影响着电力系统的诸多决策,如经济调度、自动发电控制、安全评估、维护调度和能源商业化等。该文针对电力负... 电力系统的稳定运行具有负荷平衡的强约束性,准确的电力负荷预测在保证电力系统规划与可靠、经济运行方面具有十分重要的意义,影响着电力系统的诸多决策,如经济调度、自动发电控制、安全评估、维护调度和能源商业化等。该文针对电力负荷预测的多种气象因素影响,提出一种基于Tsne降维可视化分析及飞蛾火焰优化ELM算法(MFOELM)的电力负荷预测新方法。针对影响电力负荷预测的高维气象数据,采用改进的SNE降维可视化分析方法Tsne,解决了数据拥挤造成可视化效果不佳且数据结构易发生改变的问题,通过与Kpca、SNE降维方法的对比实验,证明了Tsne可以更好地将高维气象数据向低维空间映射,较高地保持高维空间中的数据结构并改善数据可视化效果;针对ELM负荷预测模型的局限,利用MFO在求解具有约束和未知搜索空间的复杂问题时具有的优越性对ELM优化,更好地解决了ELM权值输出不稳定,易陷入局部最小值等问题。通过对SAELM、PSOELM、MFOELM三种预测算法进行寻优实验,结果表明MFO不但具有更快的求解速度,而且提高了ELM的预测精度。通过对国际公开的美国日气象数据降维,协同负荷数据进行预测进行对比实验,证明了该文方法的有效性和优越性。该文方法在唐山实际电网负荷预测中应用,为制定合理的电网运行方式提供依据。 展开更多
关键词 短期电力负荷预测 T分布随机邻接嵌入(Tsne) 降维可视化分析 飞蛾火焰优化ELM算法(MFOELM)
下载PDF
基于t-SNE降维和BIRCH聚类的单相用户相位及表箱辨识 被引量:44
10
作者 连子宽 姚力 +4 位作者 刘晟源 余允涛 唐小淇 杨莉 林振智 《电力系统自动化》 EI CSCD 北大核心 2020年第8期176-184,共9页
低压台区单相用户的相位及接入表箱信息的准确性对户变关系纠错和线损治理分析有重要影响。目前,拓扑档案的校验主要依靠电力员工现场排查,人力物力消耗大且排查效率低下。因此,亟需一种效率较高的低压台区拓扑档案校验方法。在此背景下... 低压台区单相用户的相位及接入表箱信息的准确性对户变关系纠错和线损治理分析有重要影响。目前,拓扑档案的校验主要依靠电力员工现场排查,人力物力消耗大且排查效率低下。因此,亟需一种效率较高的低压台区拓扑档案校验方法。在此背景下,文中提出了一种基于智能电表电压数据的低压台区单相用户相位及接入表箱辨识方法,可以为低压台区的拓扑辨识及排查提供参考。首先,采用t分布的随机近邻嵌入(t-SNE)技术对原始负荷数据进行降维处理,解决台区用户原始负荷特征维度过高带来的冗余性问题;接着,应用BIRCH方法对降维后的负荷数据进行聚类,实现台区下单相用户所属相位和接入表箱的辨识。最后,以浙江省海宁市某台区为例进行验证,算例分析的结果表明所提模型具有可行性和有效性。 展开更多
关键词 低压台区 t分布的随机近邻嵌入 BIRCH聚类 接入表箱辨识 相位辨识
下载PDF
基于改进贝叶斯神经网络的光伏出力概率预测 被引量:42
11
作者 赵康宁 蒲天骄 +1 位作者 王新迎 李烨 《电网技术》 EI CSCD 北大核心 2019年第12期4377-4386,共10页
光伏功率预测准确性对电网调度运行影响很大,传统的确定性预测方法对光伏出力波动的响应能力不足,给电网的安全稳定运行带来挑战。提出了基于改进贝叶斯神经网络的光伏出力概率预测方法,将神经网络的权重以概率分布的形式表示,提高了神... 光伏功率预测准确性对电网调度运行影响很大,传统的确定性预测方法对光伏出力波动的响应能力不足,给电网的安全稳定运行带来挑战。提出了基于改进贝叶斯神经网络的光伏出力概率预测方法,将神经网络的权重以概率分布的形式表示,提高了神经网络应对光伏出力随机性的能力;依据输入输出相关性进行特征降维,提高数据密度,抑制过拟合;在贝叶斯神经网络的输入端引入全连接神经网络与一维卷积神经网络,提高网络对不同输入数据的信息提取能力,提高预测精度。以实际系统为例进行实证分析,结果表明,与传统的确定性预测模型相比,所提方法在光伏出力波动时具有更高的预测准确率;与其他概率预测方法相比,所提方法在保持较高总体预测准确率的同时,预测功率区间更窄。 展开更多
关键词 分布式光伏 概率预测 贝叶斯神经网络 t分布邻域嵌入
下载PDF
基于T-SNE样本熵和TCN的滚动轴承状态退化趋势预测 被引量:31
12
作者 于重重 宁亚倩 +1 位作者 秦勇 高柯柯 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第8期39-46,共8页
为了能够尽早发现滚动轴承开始出现显著退化的临界状态,精准预测滚动轴承的状态退化趋势,提出了T-分布随机近邻嵌入(T-SNE)样本熵状态退化特征指标和基于时间卷积网络(TCN)的轴承状态退化趋势预测方法。首先利用T-SNE算法提取原始振动... 为了能够尽早发现滚动轴承开始出现显著退化的临界状态,精准预测滚动轴承的状态退化趋势,提出了T-分布随机近邻嵌入(T-SNE)样本熵状态退化特征指标和基于时间卷积网络(TCN)的轴承状态退化趋势预测方法。首先利用T-SNE算法提取原始振动信号的低维流形特征,再计算低维流形特征的样本熵作为状态退化特征,最后基于历史状态退化特征通过TCN算法预测轴承的状态退化趋势。实验结果表明,相较于传统特征指标,T-SNE样本熵特征指标能够至少提前50 min发现滚动轴承开始出现显著退化的临界状态,且TCN算法的预测误差仅为0. 45%,具有较高的工程应用价值。 展开更多
关键词 T-分布随机近邻嵌入 样本熵 时间卷积网络 滚动轴承 状态退化趋势预测
下载PDF
基于卷积神经网络的交直流输电系统故障诊断 被引量:20
13
作者 张大海 张晓炜 +1 位作者 孙浩 和敬涵 《电力系统自动化》 EI CSCD 北大核心 2022年第5期132-140,共9页
随着交直流输电系统规模的不断扩大,电网结构和故障特征愈加复杂,现有故障诊断方法面对复杂电网和超大数据量时难以精准提取故障特征,急需适应性强且准确率高的电网故障诊断方法。为此提出一种基于卷积神经网络(CNN)的电网故障诊断方法... 随着交直流输电系统规模的不断扩大,电网结构和故障特征愈加复杂,现有故障诊断方法面对复杂电网和超大数据量时难以精准提取故障特征,急需适应性强且准确率高的电网故障诊断方法。为此提出一种基于卷积神经网络(CNN)的电网故障诊断方法。首先,通过逐层筛选、逐层增叠的网络构造方式逐步测试,其目的是为了构建充分适应于电网故障诊断的网络结构;然后,利用网络层级优化策略调整训练参数,并以交叉熵最小为目标对深层故障特征进行挖掘;最后,在MATLAB/Simulink平台上搭建交直流输电系统模型,结合t分布随机邻域嵌入(t-SNE)可解释性技术展示诊断效果,通过与传统方法对比证明所提方法能够深度挖掘故障特征且具备很高的诊断准确率。 展开更多
关键词 深度学习 卷积神经网络 交直流输电系统 故障诊断 t分布随机邻域嵌入
下载PDF
基于多尺度时不可逆与t-SNE流形学习的滚动轴承故障诊断 被引量:16
14
作者 姜战伟 郑近德 +1 位作者 潘海洋 潘紫微 《振动与冲击》 EI CSCD 北大核心 2017年第17期61-68,84,共9页
为了精确地提取机械振动信号的非线性故障特征,提出了一种新的振动信号复杂性测量方法——多尺度时不可逆。同时结合t-分布邻域嵌入(t-SNE)流形学习和粒子群优化-支持向量机(PSO-SVM),提出了一种新的滚动轴承故障诊断方法。采用多尺度... 为了精确地提取机械振动信号的非线性故障特征,提出了一种新的振动信号复杂性测量方法——多尺度时不可逆。同时结合t-分布邻域嵌入(t-SNE)流形学习和粒子群优化-支持向量机(PSO-SVM),提出了一种新的滚动轴承故障诊断方法。采用多尺度时不可逆提取复杂振动信号的特征信息;利用t-SNE对高维特征空间进行降维;将低维特征向量输入到基于PSO-SVM多故障模式分类器中进行识别与诊断。将提出的方法应用于试验数据分析,并与现有方法进行了对比,分析结果表明,该方法不仅能够有效地诊断滚动轴承的工作状态和故障类型,而且优于现有方法。 展开更多
关键词 多尺度时不可逆 t-分布邻域嵌入 支持向量机 滚动轴承 故障诊断
下载PDF
EWT-MFE与t-SNE结合的旋转机械故障诊断方法 被引量:14
15
作者 薛瑞 赵荣珍 《机械设计与研究》 CSCD 北大核心 2019年第4期53-57,63,共6页
为提取出辨识度高的故障数据集,将经验小波变换(empirical wavelet transform,EWT)、多尺度模糊熵(multi-scale fuzzy entropy,MFE)以及t-分布随机邻域嵌入算法(t-distributed stochastic neighbor embedding,t-SNE)进行结合,提出一种... 为提取出辨识度高的故障数据集,将经验小波变换(empirical wavelet transform,EWT)、多尺度模糊熵(multi-scale fuzzy entropy,MFE)以及t-分布随机邻域嵌入算法(t-distributed stochastic neighbor embedding,t-SNE)进行结合,提出一种能够有效识别旋转机械故障状态的分析方法。首先,将旋转机械的振动信号进行经验小波变换,以提取具有紧支撑傅立叶频谱的调幅-调频(AM-FM)成分,选择相关系数较大的AM-FM进行信号重构;然后,计算出重构信号的多尺度模糊熵并组成能表征故障状态的高维特征集,利用t-SNE对高维特征信息进行维数约简,剔除冗余不相关特征;最后,将约简后的敏感故障数据集输入到支持向量机(support vector machin,SVM)中,在SVM核函数参数进行粒子群算法优化的基础上进行状态识别及分类。用双跨转子实验台采集的数据对上述方法进行验证,结果表明该方法能够有效提取转子振动信号的故障特征,并且具有更精确的故障识别率。 展开更多
关键词 经验小波变换 多尺度模糊熵 t-分布随机近邻嵌入算法 支持向量机
原文传递
基于电压和功率数据的低压用户相别识别优化建模与应用 被引量:13
16
作者 罗钧腾 章坚民 +3 位作者 姚力 倪琳娜 章江铭 余焕雷 《电力系统自动化》 EI CSCD 北大核心 2021年第7期123-131,共9页
低压用户相别识别是低压配电网计量拓扑识别的内容之一。首先,描述原问题并对已有研究进行回顾,阐述文中研究特点;按照线路分叉点数量将用户降维到虚拟用户空间;再对虚拟用户空间电压波形采用t分布的随机近邻嵌入(t-SNE)算法,形成进一... 低压用户相别识别是低压配电网计量拓扑识别的内容之一。首先,描述原问题并对已有研究进行回顾,阐述文中研究特点;按照线路分叉点数量将用户降维到虚拟用户空间;再对虚拟用户空间电压波形采用t分布的随机近邻嵌入(t-SNE)算法,形成进一步降维的特征空间;对于特征空间的电压波形以及聚合功率,提出同时考虑功率平衡和电压时序波形分类的多目标优化模型,使用仅考虑功率平衡的优化问题的解作为初始解。选择2个具有典型特征的城镇居民台区作为试点,发现常见的5类聚类方法均只有1个台区识别成功,且表现差异很大,而所提方法在2个案例中均取得成功,表明其具有一定的稳定性和通用性。 展开更多
关键词 低压配电网 相别识别 电压波形相似 功率平衡 聚类 t分布的随机近邻嵌入 遗传算法
下载PDF
基于DTCWPT和t-SNE的去噪方法及在故障诊断中的应用 被引量:10
17
作者 梁伟阁 佘博 田福庆 《电子测量与仪器学报》 CSCD 北大核心 2018年第5期74-81,共8页
为了提取被强噪声淹没的机械设备振动信号中蕴含的微弱故障特征,依据有用信号和噪声在空间分布特性的不同,将流形学习的方法引入到信号降噪中,提出一种将双树复小波包(DTCWPT)和t分布随机近邻嵌入(t-SNE)结合的去噪方法,充分利用了DTCWP... 为了提取被强噪声淹没的机械设备振动信号中蕴含的微弱故障特征,依据有用信号和噪声在空间分布特性的不同,将流形学习的方法引入到信号降噪中,提出一种将双树复小波包(DTCWPT)和t分布随机近邻嵌入(t-SNE)结合的去噪方法,充分利用了DTCWPT分解的多尺度特性以及t-SNE的非线性降维能力。将振动信号进行双树复小波包分解,依据各尺度小波包系数Shannon熵值搜索最佳小波包基,利用提出的新的阈值函数,对最佳小波包基的小波包系数进行去噪并单支重构组成高维信号空间,然后,采用t-SNE提取高维空间的低维流形,对低维信号序列进一步采用阈值去噪,利用谱回归分析重构回一维信号序列。最后,通过对仿真信号与滚动轴承振动信号进行去噪,结果证实了方法具有良好的非线性去噪性能,将仿真信号的信噪比从-1提高到8.6 d B,并且能更有效的提取强噪声干扰下滚动轴承的故障特征频率。 展开更多
关键词 双树复小波包 t分布随机近邻嵌入 谱回归分析 去噪 故障诊断
下载PDF
基于改进t-SNE和RBFNN的柴油机故障诊断 被引量:6
18
作者 尚前明 黄兴烨 +3 位作者 沈栋 朱仁杰 胡秋芳 邱天 《船舶工程》 CSCD 北大核心 2023年第1期91-97,共7页
针对柴油机故障诊断问题,提出一种基于改进t分布的随机邻域嵌入(t-SNE)和径向基函数神经网络(RBFNN)的柴油机故障诊断方法。针对t-SNE算法对振动信号的实际降维效果不够理想的问题,进行自适应加权优化;引入遗传算法(GA)解决果蝇优化算法... 针对柴油机故障诊断问题,提出一种基于改进t分布的随机邻域嵌入(t-SNE)和径向基函数神经网络(RBFNN)的柴油机故障诊断方法。针对t-SNE算法对振动信号的实际降维效果不够理想的问题,进行自适应加权优化;引入遗传算法(GA)解决果蝇优化算法(FOA)陷入局部最优的问题,将GA-FOA应用于RBFNN参数选取中;采用改进后的RBFNN模型对经自适应加权t-SNE降维的数据进行故障识别。研究结果表明,改进后的算法能明显改善聚类效果,提高故障识别的正确率,具有良好的应用前景。 展开更多
关键词 柴油机 振动信号 故障诊断 t分布的随机邻域嵌入(t-SNE) 径向基函数神经网络(RBFNN)
原文传递
基于改进变分模态分解与流形学习的滚动轴承故障诊断 被引量:8
19
作者 孙康 岳敏楠 +1 位作者 金江涛 李春 《热能动力工程》 CAS CSCD 北大核心 2022年第3期176-185,共10页
滚动轴承早期损伤信号特征量缺失且易被环境噪声掩盖,根据分形理论,结合灰狼优化算法(GWO)提出改进变分模态分解方法(Improved Variational Mode Decomposition,IVMD),求解各模态多种非线性特征量,并采用随机近邻嵌入理论(t-distributed... 滚动轴承早期损伤信号特征量缺失且易被环境噪声掩盖,根据分形理论,结合灰狼优化算法(GWO)提出改进变分模态分解方法(Improved Variational Mode Decomposition,IVMD),求解各模态多种非线性特征量,并采用随机近邻嵌入理论(t-distributed Stochastic Neighbor Embedding,t-SNE)进行降维分类,以实现无监督故障诊断。基于轴承损伤实验数据,验证所提方法的可靠性。结果表明:采用IVMD所获模态与多种非线性值构建的特征矩阵更具代表性,可诊断轴承微弱故障;与现有方法相比,所提方法聚类表现更清晰,分类准确率更高,且具有良好的鲁棒性。 展开更多
关键词 变分模态分解 灰狼算法 轴承 分形 随机近邻嵌入 故障诊断
原文传递
Knowledge Graph Embedding for Hyper-Relational Data 被引量:7
20
作者 Chunhong Zhang Miao Zhou +2 位作者 Xiao Han Zheng Hu Yang Ji 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2017年第2期185-197,共13页
Knowledge graph representation has been a long standing goal of artificial intelligence. In this paper,we consider a method for knowledge graph embedding of hyper-relational data, which are commonly found in knowledge... Knowledge graph representation has been a long standing goal of artificial intelligence. In this paper,we consider a method for knowledge graph embedding of hyper-relational data, which are commonly found in knowledge graphs. Previous models such as Trans(E, H, R) and CTrans R are either insufficient for embedding hyper-relational data or focus on projecting an entity into multiple embeddings, which might not be effective for generalization nor accurately reflect real knowledge. To overcome these issues, we propose the novel model Trans HR, which transforms the hyper-relations in a pair of entities into an individual vector, serving as a translation between them. We experimentally evaluate our model on two typical tasks—link prediction and triple classification.The results demonstrate that Trans HR significantly outperforms Trans(E, H, R) and CTrans R, especially for hyperrelational data. 展开更多
关键词 distributed representation transfer matrix knowledge graph embedding
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部