期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
一种基于约束优化的虚拟网络映射方法 被引量:9
1
作者 李小玲 郭长国 +1 位作者 李小勇 王怀民 《计算机研究与发展》 EI CSCD 北大核心 2012年第8期1601-1610,共10页
虚拟网络映射问题将不同的虚拟网络应用映射到相同的基础设施网络中,这是一个极具挑战性的问题.针对该问题,提出了一种基于约束优化的虚拟网络映射方法,将映射问题分解为节点映射和链路映射两个阶段,其中,前者是将虚拟节点映射到物理节... 虚拟网络映射问题将不同的虚拟网络应用映射到相同的基础设施网络中,这是一个极具挑战性的问题.针对该问题,提出了一种基于约束优化的虚拟网络映射方法,将映射问题分解为节点映射和链路映射两个阶段,其中,前者是将虚拟节点映射到物理节点上,后者将虚拟链路映射到物理路径上,它们都是NP难问题.针对节点映射和链路映射分别提出了node-mapping算法和link-mapping算法.node-mapping算法基于贪婪算法的思想,映射时考虑了物理节点所能提供的资源数量以及物理节点间距离两个因素,该算法能够保证基础设施网络中各节点间的负载相对均衡;同时,通过采用访问控制机制,过滤一些异常的虚拟网络请求,能够有效地提高资源的使用效率.link-mapping算法基于人工智能领域中的分布式约束优化思想,其能够保证得到的解是全局最优的,即映射链路的代价最小.最后,通过模拟实验对该方法进行验证,实验结果表明该方法在求解虚拟网络映射问题时的性能良好. 展开更多
关键词 虚拟网络映射问题 节点映射 链路映射 分布式约束优化 基础设施网络 虚拟网络
下载PDF
分布式约束优化方法研究进展 被引量:8
2
作者 段沛博 张长胜 张斌 《软件学报》 EI CSCD 北大核心 2016年第2期264-279,共16页
多agent系统作为分布式人工智能研究领域的重要分支,已被广泛应用于多个领域中复杂系统的建模.而分布式约束优化作为一种多agent系统求解的关键技术,已成为约束推理研究的热点.首先对其适用性进行分析,并基于对已有算法的研究,总结出采... 多agent系统作为分布式人工智能研究领域的重要分支,已被广泛应用于多个领域中复杂系统的建模.而分布式约束优化作为一种多agent系统求解的关键技术,已成为约束推理研究的热点.首先对其适用性进行分析,并基于对已有算法的研究,总结出采用该方法解决问题的基本流程,在此基础上,从解的质量保证、求解策略等角度对算法进行了完整的分类;其次,根据算法分类结果以及执行机制,对大量经典以及近年来的分布式约束优化算法进行了深入分析,并从通信、求解质量、求解效率等方面对典型算法进行了实验对比;最后,结合分布式约束优化技术的求解优势给出了分布式约束优化问题的实际应用特征,总结了目前存在的一些问题,并对下一步工作进行了展望. 展开更多
关键词 多AGENT系统 分布式约束优化 约束规划 优化算法
下载PDF
分布式约束优化问题研究及其进展 被引量:4
3
作者 李小玲 王怀民 +2 位作者 郭长国 丁博 李小勇 《计算机学报》 EI CSCD 北大核心 2015年第8期1656-1671,共16页
多Agent协作过程中的许多问题都可以被抽象为分布式约束优化问题(DCOP),如规划、行程安排、分布式控制和资源分配等.这些问题关注于如何通过协调多Agent之间的相互决定,以达到一个全局最优决策的目的.相应地,分布式约束优化算法是用来... 多Agent协作过程中的许多问题都可以被抽象为分布式约束优化问题(DCOP),如规划、行程安排、分布式控制和资源分配等.这些问题关注于如何通过协调多Agent之间的相互决定,以达到一个全局最优决策的目的.相应地,分布式约束优化算法是用来求解此类问题的一种有效方式.该文对分布式约束优化问题进行了综述,首先,阐述了分布式约束优化问题的基本概念,并提出了一种分布式约束优化算法的分类框架.其次,根据该分类框架,介绍了目前已有的分布式约束优化算法,并加以对比分析.此外,分析了分布式约束优化问题的相关应用.最后,指明了分布式约束优化领域的未来研究趋势. 展开更多
关键词 分布式约束优化 AGENT 人工智能 分布式约束优化算法
下载PDF
一种改进的分布约束优化算法MULBS+
4
作者 段沛博 张长胜 张斌 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第2期188-193,共6页
完备算法虽然能够求得分布式约束优化问题最优解,但要消耗大量资源及时间,相反,非完备算法通过求得次优解来提高效率.MULBS作为一个有效的非完备算法,虽然在求解质量和时间上有所提高,但在解决赋值冲突时采用的回溯策略及并行搜索方面... 完备算法虽然能够求得分布式约束优化问题最优解,但要消耗大量资源及时间,相反,非完备算法通过求得次优解来提高效率.MULBS作为一个有效的非完备算法,虽然在求解质量和时间上有所提高,但在解决赋值冲突时采用的回溯策略及并行搜索方面存在不足.通过对该算法的深入分析,本文针对上述问题进行了改进,提出其改进算法MULBS+.通过在回溯策略中引入最小冲突选择机制,以及在约束图密度较大时采用基于动态子图划分的并行搜索策略,进一步提高了算法的性能.实验表明,该算法除增加一定的通信信息外,其执行时间及求解质量均优于原算法. 展开更多
关键词 分布式约束优化 动态子图 图密度 MULBS MULBS+
下载PDF
基于改进AGD-分布式多智能体系统的目标优化分配模型 被引量:6
5
作者 刘家义 王刚 +2 位作者 张杰 王闯 宋喜团 《系统工程与电子技术》 EI CSCD 北大核心 2020年第4期863-870,共8页
由于现代化战场环境动态多变、作战实时性高,针对当前防空作战中武器目标分配(weapon target assignment,WTA)约束多且复杂、传统建模无法真实反映战争过程、模型可信度不高等问题,提出一种在分布式约束优化问题(distributed constraint... 由于现代化战场环境动态多变、作战实时性高,针对当前防空作战中武器目标分配(weapon target assignment,WTA)约束多且复杂、传统建模无法真实反映战争过程、模型可信度不高等问题,提出一种在分布式约束优化问题(distributed constraint optimization problem,DCOP)背景下,基于多智能体系统(multi-Agent system,MAS)理论的武器目标优化分配模型,并利用改进的加速梯度下降(accelerated gradient descent,AGD)算法进行求解。通过实验证明了该算法具有良好的收敛性和低复杂度,能够适应现代化防空作战的需求,满足大规模寻优问题的需求,高效解决多智能体目标优化分配问题。 展开更多
关键词 多智能体系统 分布式约束优化问题 武器目标分配 加速梯度下降
下载PDF
基于分布式约束优化的武器目标分配问题研究 被引量:4
6
作者 雷兴明 邢昌风 吴玲 《计算机工程》 CAS CSCD 2012年第7期128-130,共3页
为解决舰艇编队协同防空中的武器目标分配(WTA)问题,提出一种将WTA问题建模为分布式约束优化问题的方法。介绍求解分布式约束优化问题的2个典型算法ADOPT和DPOP。通过Frodo软件平台对舰艇拦截多批反舰导弹过程进行仿真,比较2个算法在仿... 为解决舰艇编队协同防空中的武器目标分配(WTA)问题,提出一种将WTA问题建模为分布式约束优化问题的方法。介绍求解分布式约束优化问题的2个典型算法ADOPT和DPOP。通过Frodo软件平台对舰艇拦截多批反舰导弹过程进行仿真,比较2个算法在仿真时间、通信量等方面的性能,结果证明了该方法求解WTA问题的可行性。 展开更多
关键词 武器目标分配问题 分布式约束优化问题 ADOPT算法 DPOP算法 假设树 Frodo软件
下载PDF
求解连续型分布式约束优化问题的自适应多点交叉遗传算法
7
作者 廖鑫 石美凤 陈媛 《智能系统学报》 CSCD 北大核心 2023年第4期793-802,共10页
针对连续型分布式约束优化问题(continuous distributed constraint optimization problems,C-DCOPs)求解算法的anytime属性的缺失、约束函数形式的限制和无法保证收敛等局限,本文提出一种求解C-DCOP的自适应多点交叉遗传算法(adaptive ... 针对连续型分布式约束优化问题(continuous distributed constraint optimization problems,C-DCOPs)求解算法的anytime属性的缺失、约束函数形式的限制和无法保证收敛等局限,本文提出一种求解C-DCOP的自适应多点交叉遗传算法(adaptive multi-point crossover genetic algorithm based C-DCOP,AMCGA)。在AMCGA中,智能体(agent)构建分布式种群和广度优先搜索(breadth first search,BFS)伪树以分布式地计算个体适应度;通过贪婪策略选择精英个体进行自适应多点交叉实现全局搜索,智能体之间协同通信保证分布式种群中解的一致性;利用变异算子完成局部搜索。AMCGA适用于任意形式的约束函数,并被证明具有任意时间属性和全局收敛性。在4类基准问题上的广泛实验结果表明,AMCGA的求解质量优于最先进的C-DCOP求解算法,能有效地打破目前C-DCOP求解算法的局限,并在求解质量方面存在20%~30%的提升。 展开更多
关键词 连续型分布式约束优化问题 任意时间属性 自适应多点交叉 遗传算法 分布式种群 广度优先搜索伪树 智能体 求解质量
下载PDF
基于多种群的随机扰动蚁群算法求解分布式约束优化问题 被引量:3
8
作者 石美凤 肖诗川 冯欣 《计算机应用研究》 CSCD 北大核心 2022年第9期2683-2688,共6页
针对现有的基于蚁群优化思想求解分布式约束优化问题的算法收敛较慢、容易陷入局部最优等问题,提出了一种基于多种群的随机扰动蚁群算法(random disturbance based multi-population ant colony algorithm to solve distributed constra... 针对现有的基于蚁群优化思想求解分布式约束优化问题的算法收敛较慢、容易陷入局部最优等问题,提出了一种基于多种群的随机扰动蚁群算法(random disturbance based multi-population ant colony algorithm to solve distributed constraint optimization problems,RDMAD)来求解分布式约束优化问题。首先,RDMAD提出了一种分工合作机制,将种群按比例划分为采用贪婪搜索的子种群和采用启发式搜索的子种群,同时构建分级更新策略,提高算法收敛速度和求解质量;然后对采用贪婪搜索的子种群设计自适应变异算子和奖惩机制,防止算法陷入局部最优;最后在算法陷入停滞时触发随机扰动策略,增加种群多样性。将RDMAD与七种最先进的非完备算法在三类基准问题上的寻优结果进行了实验对比,结果表明RDMAD在求解质量和收敛速度上优势明显,且稳定性较高。 展开更多
关键词 分布式约束优化问题 蚁群算法 自适应变异算子 非完备算法
下载PDF
低约束密度分布式约束优化问题的求解算法 被引量:3
9
作者 丁博 王怀民 +1 位作者 史殿习 唐扬斌 《软件学报》 EI CSCD 北大核心 2011年第4期625-639,共15页
多Agent协作过程中的许多挑战都可以建模为分布式约束优化问题.针对低约束密度的分布式约束优化问题,提出了一种基于贪婪和回跳思想的求解算法.在该算法中,各Agent基于贪婪原则进行决策,能够利用低约束密度问题中大量赋值组合代价为0这... 多Agent协作过程中的许多挑战都可以建模为分布式约束优化问题.针对低约束密度的分布式约束优化问题,提出了一种基于贪婪和回跳思想的求解算法.在该算法中,各Agent基于贪婪原则进行决策,能够利用低约束密度问题中大量赋值组合代价为0这一特点来加快求解速度.同时,Agent间的回跳机制可以在贪婪原则陷入局部最优时保证算法的完全性.相对于已有主流算法,该算法可以在保持多项式级别的消息长度/空间复杂度的前提下,以较少的消息数目求解低约束密度的分布式约束优化问题.给出了算法关键机制的正确性证明,并通过实验验证了算法的上述性能优势. 展开更多
关键词 分布式约束优化问题 多AGENT 算法
下载PDF
自组织分治求解分布式约束优化问题 被引量:3
10
作者 黄晶 刘大有 +1 位作者 杨博 金弟 《计算机研究与发展》 EI CSCD 北大核心 2008年第11期1831-1839,共9页
分布式约束优化问题(DCOP)是在大规模、开放、动态网络环境中的优化问题,在计算网格、多媒体网络、电子商务、企业资源规划等领域中都有广泛应用.除了具有传统优化问题的非线性、约束性等特点,DCOP还具有动态演化、信息区域化、控制局... 分布式约束优化问题(DCOP)是在大规模、开放、动态网络环境中的优化问题,在计算网格、多媒体网络、电子商务、企业资源规划等领域中都有广泛应用.除了具有传统优化问题的非线性、约束性等特点,DCOP还具有动态演化、信息区域化、控制局部化、网络状态异步更新等特点.寻求一种解决DCOP的大规模、并行、具有智能特征的求解方法已成为一个具有挑战性的研究课题.目前已提出多种求解DCOP的算法,但大多不是完全分散的算法,存在集中环节,需要网络的全局结构作为输入,不适合处理由规模巨大、地理分布、控制分散等因素导致的全局结构难以获取的分布式网络.针对该问题,提出一个基于自组织行为的分治策略求解DCOP.在不具有全局网络知识的情况下,分布在网络中的多个自治Agent基于局部感知信息、采用自组织的方式协作求解.与已有算法相比,它是一个完全分散式算法,并在求解效率和求解质量方面都展现出很好的性能. 展开更多
关键词 分布式约束优化问题 多AGENT系统 自组织 分散式算法 分治法
下载PDF
Cooperative Multi-Agent Reinforcement Learning with Constraint-Reduced DCOP
11
作者 Yi Xie Zhongyi Liu +1 位作者 Zhao Liu Yijun Gu 《Journal of Beijing Institute of Technology》 EI CAS 2017年第4期525-533,共9页
Cooperative multi-agent reinforcement learning( MARL) is an important topic in the field of artificial intelligence,in which distributed constraint optimization( DCOP) algorithms have been widely used to coordinat... Cooperative multi-agent reinforcement learning( MARL) is an important topic in the field of artificial intelligence,in which distributed constraint optimization( DCOP) algorithms have been widely used to coordinate the actions of multiple agents. However,dense communication among agents affects the practicability of DCOP algorithms. In this paper,we propose a novel DCOP algorithm dealing with the previous DCOP algorithms' communication problem by reducing constraints.The contributions of this paper are primarily threefold:(1) It is proved that removing constraints can effectively reduce the communication burden of DCOP algorithms.(2) An criterion is provided to identify insignificant constraints whose elimination doesn't have a great impact on the performance of the whole system.(3) A constraint-reduced DCOP algorithm is proposed by adopting a variant of spectral clustering algorithm to detect and eliminate the insignificant constraints. Our algorithm reduces the communication burdern of the benchmark DCOP algorithm while keeping its overall performance unaffected. The performance of constraint-reduced DCOP algorithm is evaluated on four configurations of cooperative sensor networks. The effectiveness of communication reduction is also verified by comparisons between the constraint-reduced DCOP and the benchmark DCOP. 展开更多
关键词 reinforcement learning cooperative multi-agent system distributed constraint optimization (DCOP) constraint-reduced DCOP
下载PDF
一种动态分布式约束优化问题协同求解算法 被引量:1
12
作者 葛方振 魏臻 +2 位作者 陆阳 邱述威 李丽香 《模式识别与人工智能》 EI CSCD 北大核心 2013年第9期801-811,共11页
多Agent协作过程中的许多问题都可在分布式约束优化问题(DCOP)框架下建模,但多局限于规划问题,且一般需Agent具有完全、准确收益函数.针对DCOP局限性,定义动态分布式约束优化问题(DDCOP),分析求解它的两个关键操作:Exploration和Exploit... 多Agent协作过程中的许多问题都可在分布式约束优化问题(DCOP)框架下建模,但多局限于规划问题,且一般需Agent具有完全、准确收益函数.针对DCOP局限性,定义动态分布式约束优化问题(DDCOP),分析求解它的两个关键操作:Exploration和Exploitation,提出基于混沌蚂蚁的DDCOP协同求解算法(CA-DDCOP).该算法借鉴单只蚂蚁的混沌行为和蚁群的自组织行为,实现Exploration和Exploitation,根据玻尔兹曼分布,建立平衡Exploration和Exploitation的协同方法.通过多射频多信道无线Ad Hoc网络的信道分配验证该算法的有效性. 展开更多
关键词 混沌 协同求解 动态分布式约束优化 信道分配
下载PDF
分布式约束优化问题及其求解算法
13
作者 雷兴明 邢昌风 吴玲 《火力与指挥控制》 CSCD 北大核心 2012年第5期1-5,共5页
分布式约束优化问题(DCOP)能够对多智能体系统(MAS)中的各种分布式推理任务进行建模,广泛应用于分布式规划、调度、资源分配等问题中。首先从DCOP的概念出发,引入一个典型的DCOP实例,在此基础上对DCOP问题求解的两类主流算法进行了详细... 分布式约束优化问题(DCOP)能够对多智能体系统(MAS)中的各种分布式推理任务进行建模,广泛应用于分布式规划、调度、资源分配等问题中。首先从DCOP的概念出发,引入一个典型的DCOP实例,在此基础上对DCOP问题求解的两类主流算法进行了详细介绍和比较分析。针对DCOP对现实问题建模中出现的部分集中式、硬约束、开放式、隐私和anytime等5个方面的问题进行了阐述,并介绍了相应的扩展算法。在动态实时问题,自稳定性与误差容错以及在物理分布式环境下仿真等问题仍需进一步研究。 展开更多
关键词 多智能体系统 分布式约束优化问题 ADOPT算法 DPOP算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部