针对现有的基于蚁群优化思想求解分布式约束优化问题的算法收敛较慢、容易陷入局部最优等问题,提出了一种基于多种群的随机扰动蚁群算法(random disturbance based multi-population ant colony algorithm to solve distributed constra...针对现有的基于蚁群优化思想求解分布式约束优化问题的算法收敛较慢、容易陷入局部最优等问题,提出了一种基于多种群的随机扰动蚁群算法(random disturbance based multi-population ant colony algorithm to solve distributed constraint optimization problems,RDMAD)来求解分布式约束优化问题。首先,RDMAD提出了一种分工合作机制,将种群按比例划分为采用贪婪搜索的子种群和采用启发式搜索的子种群,同时构建分级更新策略,提高算法收敛速度和求解质量;然后对采用贪婪搜索的子种群设计自适应变异算子和奖惩机制,防止算法陷入局部最优;最后在算法陷入停滞时触发随机扰动策略,增加种群多样性。将RDMAD与七种最先进的非完备算法在三类基准问题上的寻优结果进行了实验对比,结果表明RDMAD在求解质量和收敛速度上优势明显,且稳定性较高。展开更多
Cooperative multi-agent reinforcement learning( MARL) is an important topic in the field of artificial intelligence,in which distributed constraint optimization( DCOP) algorithms have been widely used to coordinat...Cooperative multi-agent reinforcement learning( MARL) is an important topic in the field of artificial intelligence,in which distributed constraint optimization( DCOP) algorithms have been widely used to coordinate the actions of multiple agents. However,dense communication among agents affects the practicability of DCOP algorithms. In this paper,we propose a novel DCOP algorithm dealing with the previous DCOP algorithms' communication problem by reducing constraints.The contributions of this paper are primarily threefold:(1) It is proved that removing constraints can effectively reduce the communication burden of DCOP algorithms.(2) An criterion is provided to identify insignificant constraints whose elimination doesn't have a great impact on the performance of the whole system.(3) A constraint-reduced DCOP algorithm is proposed by adopting a variant of spectral clustering algorithm to detect and eliminate the insignificant constraints. Our algorithm reduces the communication burdern of the benchmark DCOP algorithm while keeping its overall performance unaffected. The performance of constraint-reduced DCOP algorithm is evaluated on four configurations of cooperative sensor networks. The effectiveness of communication reduction is also verified by comparisons between the constraint-reduced DCOP and the benchmark DCOP.展开更多
文摘针对现有的基于蚁群优化思想求解分布式约束优化问题的算法收敛较慢、容易陷入局部最优等问题,提出了一种基于多种群的随机扰动蚁群算法(random disturbance based multi-population ant colony algorithm to solve distributed constraint optimization problems,RDMAD)来求解分布式约束优化问题。首先,RDMAD提出了一种分工合作机制,将种群按比例划分为采用贪婪搜索的子种群和采用启发式搜索的子种群,同时构建分级更新策略,提高算法收敛速度和求解质量;然后对采用贪婪搜索的子种群设计自适应变异算子和奖惩机制,防止算法陷入局部最优;最后在算法陷入停滞时触发随机扰动策略,增加种群多样性。将RDMAD与七种最先进的非完备算法在三类基准问题上的寻优结果进行了实验对比,结果表明RDMAD在求解质量和收敛速度上优势明显,且稳定性较高。
基金Supported by the National Social Science Foundation of China(15ZDA034,14BZZ028)Beijing Social Science Foundation(16JDGLA036)JKF Program of People’s Public Security University of China(2016JKF01318)
文摘Cooperative multi-agent reinforcement learning( MARL) is an important topic in the field of artificial intelligence,in which distributed constraint optimization( DCOP) algorithms have been widely used to coordinate the actions of multiple agents. However,dense communication among agents affects the practicability of DCOP algorithms. In this paper,we propose a novel DCOP algorithm dealing with the previous DCOP algorithms' communication problem by reducing constraints.The contributions of this paper are primarily threefold:(1) It is proved that removing constraints can effectively reduce the communication burden of DCOP algorithms.(2) An criterion is provided to identify insignificant constraints whose elimination doesn't have a great impact on the performance of the whole system.(3) A constraint-reduced DCOP algorithm is proposed by adopting a variant of spectral clustering algorithm to detect and eliminate the insignificant constraints. Our algorithm reduces the communication burdern of the benchmark DCOP algorithm while keeping its overall performance unaffected. The performance of constraint-reduced DCOP algorithm is evaluated on four configurations of cooperative sensor networks. The effectiveness of communication reduction is also verified by comparisons between the constraint-reduced DCOP and the benchmark DCOP.