期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
基于混合距离学习的双指数模糊C均值算法 被引量:23
1
作者 王骏 王士同 《软件学报》 EI CSCD 北大核心 2010年第8期1878-1888,共11页
提出了一种基于DI-FCM(double indices fuzzy C-means)算法框架的无监督距离学习算法——基于混合距离学习的双指数模糊C均值算法HDDI-FCM(double indices fuzzy C-m eans with hybrid distance).数据集未知距离度量被表示为若干已有距... 提出了一种基于DI-FCM(double indices fuzzy C-means)算法框架的无监督距离学习算法——基于混合距离学习的双指数模糊C均值算法HDDI-FCM(double indices fuzzy C-m eans with hybrid distance).数据集未知距离度量被表示为若干已有距离的线性组合,然后执行HDDI-FCM,在对数据集进行有效聚类的同时进行距离学习.为了保证迭代算法收敛,引入了Steffensen迭代法来改进计算簇中心点的迭代公式.讨论了算法中参数的选择.基于UCI(University of California,Irvine)数据集的实验结果表明该算法是有效的. 展开更多
关键词 距离学习 聚类 模糊C均值算法 混合距离 Steffensen迭代法
下载PDF
有监督的距离度量学习算法研究进展 被引量:23
2
作者 沈媛媛 严严 王菡子 《自动化学报》 EI CSCD 北大核心 2014年第12期2673-2686,共14页
近年来,距离度量学习已成为计算机视觉和模式识别等领域最为活跃的研究课题之一.如何利用训练数据学习得到有效的距离度量来衡量目标之间的相似性是该类研究的关键问题.针对有监督的距离度量学习问题,目前已提出了大量的研究算法.结合... 近年来,距离度量学习已成为计算机视觉和模式识别等领域最为活跃的研究课题之一.如何利用训练数据学习得到有效的距离度量来衡量目标之间的相似性是该类研究的关键问题.针对有监督的距离度量学习问题,目前已提出了大量的研究算法.结合近年已发表相关文献对有监督的距离度量学习算法进行了详细的介绍和讨论.根据样本信息利用方式的不同,将其划分成基于成对约束和非成对约束的距离度量学习算法,重点介绍了一些常用的典型算法,分析了每种算法的原理和优缺点,最后是未来发展方向和趋势的展望. 展开更多
关键词 距离度量学习 马氏距离 成对约束 非成对约束
下载PDF
基于余弦距离度量学习的伪K近邻文本分类算法 被引量:19
3
作者 彭凯 汪伟 杨煜普 《计算机工程与设计》 CSCD 北大核心 2013年第6期2200-2203,2211,共5页
距离度量学习在分类领域有着广泛的应用,将其应用到文本分类时,由于一般采用的向量空间模型(VSM)中的TF*IDF算法在对文本向量表达时向量均是维度相同并且归一化的,这就导致传统距离度量学习过程中采用的欧式距离作为相似度判别标准在文... 距离度量学习在分类领域有着广泛的应用,将其应用到文本分类时,由于一般采用的向量空间模型(VSM)中的TF*IDF算法在对文本向量表达时向量均是维度相同并且归一化的,这就导致传统距离度量学习过程中采用的欧式距离作为相似度判别标准在文本分类领域往往无法取得预期的效果,在距离度量学习中的LMNN算法的启发下提出一种余弦距离度量学习算法,使其适应于文本分类领域,称之为CS-LMNN。考虑到文本分类领域中样本类偏斜情况比较普遍,提出采用一种伪K近邻分类算法与CS-LMNN结合实现文本分类,该算法首先利用CS-LMNN算法对训练数据进行距离度量学习,根据训练结果对测试数据使用伪K近邻分类算法进行分类,实验结果表明,该算法可以有效的提高分类精度。 展开更多
关键词 余弦 距离度量学习 伪K近邻 文本分类 向量空间模型
下载PDF
马氏度量学习中的几个关键问题研究及几何解释 被引量:17
4
作者 杨绪兵 王一雄 陈斌 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期133-141,共9页
采用距离度量模式的相似性(或不相似性)已广泛应用于模式识别和机器学习等领域.最常用的度量是欧氏距离和马氏距离(Mahalanobis distance).欧氏距离虽然计算相对简单,但由于存在无法结合先验知识、同等看待样本等局限性,常无法满足实际... 采用距离度量模式的相似性(或不相似性)已广泛应用于模式识别和机器学习等领域.最常用的度量是欧氏距离和马氏距离(Mahalanobis distance).欧氏距离虽然计算相对简单,但由于存在无法结合先验知识、同等看待样本等局限性,常无法满足实际需要.解决此类问题的有效手段之一就是采用非欧氏度量,如马氏度量.马氏度量不仅能够结合数据的统计特性,还能兼顾样本间的相关性.讨论马氏距离度量的相关性质,并给予证明,主要包括:(1)两种度量的区别与联系;(2)在马氏距离度量下导出的点到平面(超平面)距离公式及投影公式;(3)两种度量是距离保持的.最后,给出相关实验验证. 展开更多
关键词 欧氏距离 马氏距离 度量学习 相似性
下载PDF
基于距离中心化与投影向量学习的行人重识别 被引量:17
5
作者 丁宗元 王洪元 +1 位作者 陈付华 倪彤光 《计算机研究与发展》 EI CSCD 北大核心 2017年第8期1785-1794,共10页
现有的基于投影的行人重识别方法具有训练时间长、投影矩阵维数高、识别率低等问题.此外在建立训练集时,还会出现类内样本数目远少于类间样本数目的情况.针对这些问题,提出了基于距离中心化的相似性度量算法.在构建训练集时,将同一组目... 现有的基于投影的行人重识别方法具有训练时间长、投影矩阵维数高、识别率低等问题.此外在建立训练集时,还会出现类内样本数目远少于类间样本数目的情况.针对这些问题,提出了基于距离中心化的相似性度量算法.在构建训练集时,将同一组目标群体特征值中心化,利用中心特征值来构建类间距离,而类内距离保持不变.这样使得类内类间样本数目接近,可以很好地缓解类别不平衡所带来的过拟合风险.另外在学习投影矩阵时,利用训练集更新策略,学习若干组投影向量,使得到的投影向量近似正交,这样既可以有效减少运算复杂度和存储复杂度,又可以使得学习到的投影向量能够通过简单的相乘近似得到原来的投影矩阵.最后,在学习投影向量时采用共轭梯度法,该方法具有二次收敛性,能够快速收敛到目标精度.实验结果表明:提出的算法具有较高的效率,在不同数据集上的识别率都有明显的提升,训练时间也比其他常用的行人重识别算法要短. 展开更多
关键词 行人重识别 距离中心化 度量学习 投影向量 共轭梯度法
下载PDF
非对称行人重识别:跨摄像机持续行人追踪 被引量:10
6
作者 郑伟诗 吴岸聪 《中国科学:信息科学》 CSCD 北大核心 2018年第5期545-563,共19页
行人重识别是实现跨摄像机场景大范围追踪行人的关键技术,利用该技术可以把行人的碎片化多场景轨迹连接起来.本文首先回顾了行人重识别的发展,列举了目前行人重识别研究的主要难点和挑战.然后进一步介绍了作者所在研究团队针对行人重识... 行人重识别是实现跨摄像机场景大范围追踪行人的关键技术,利用该技术可以把行人的碎片化多场景轨迹连接起来.本文首先回顾了行人重识别的发展,列举了目前行人重识别研究的主要难点和挑战.然后进一步介绍了作者所在研究团队针对行人重识别发展的非对称度量学习理论,及基于非对称度量理论和思想所开展的面向开放性行人重识别的非对称行人重识别建模.与现有用于行人重识别的度量学习算法相比,现有算法通常忽略了摄像机特征变化的特性,而非对称度量的优点是可以学习具备建模不同视域特点非一致性能力的特征变换.非对称建模除了应用在一般的行人重识别问题上,还可以应用在跨模态行人重识别、低分辨率行人重识别、基于属性与图像匹配的行人重识别、无监督行人重识别和不完整行人重识别等问题上.最后,本文讨论了行人重识别未来的发展. 展开更多
关键词 视频监控 行人重识别 行人跨视域追踪 度量学习 非对称
原文传递
一种基于近邻元分析的文本分类算法 被引量:10
7
作者 刘丛山 李祥宝 杨煜普 《计算机工程》 CAS CSCD 2012年第15期139-141,共3页
在近邻元分析(NCA)算法的基础上,提出K近邻元分析分类算法K-NCA。利用NCA算法完成对训练样本集的距离测度学习和降维,定义类偏斜因子,引入K近邻思想,得到测试样本的类条件概率估计,并通过该概率进行类别判定,实现文本分类器功能。实验... 在近邻元分析(NCA)算法的基础上,提出K近邻元分析分类算法K-NCA。利用NCA算法完成对训练样本集的距离测度学习和降维,定义类偏斜因子,引入K近邻思想,得到测试样本的类条件概率估计,并通过该概率进行类别判定,实现文本分类器功能。实验结果表明,K-NCA算法的分类效果较好。 展开更多
关键词 近邻元分析 距离测度学习 降维 K近邻 文本分类
下载PDF
融合距离度量学习和SVM的图像匹配算法 被引量:9
8
作者 陈开志 乐承沛 钟尚平 《小型微型计算机系统》 CSCD 北大核心 2015年第6期1353-1357,共5页
目前度量学习方法通过有限样本数据学习得到新度量后,采用简单的分类器(如直接欧式距离计算)通常不能达到最佳分类效果.SVM作为一种经典的分类器,具有优秀的线性和非线性分类能力,可以弥补距离度量学习方法的不足.对此,提出一种应用于... 目前度量学习方法通过有限样本数据学习得到新度量后,采用简单的分类器(如直接欧式距离计算)通常不能达到最佳分类效果.SVM作为一种经典的分类器,具有优秀的线性和非线性分类能力,可以弥补距离度量学习方法的不足.对此,提出一种应用于图像匹配的融合距离度量学习和SVM的(DML-SVM)算法.首先,利用度量学习方法得到的线性变换矩阵,将样本变换到新的特征空间,降低特征各维度之间的相关性,调整特征各维度的权重;然后通过SVM对新特征进行线性或非线性分类.通过在LFW,Pubfig,Toycars三个图像数据库上的测试结果表明:融合方法的分类能力优于度量学习和SVM算法各自单独使用时的性能,且融合算法对训练样本数量具有很强的鲁棒性,即使只有少量训练样本(180个)时,融合算法仍然能具有较高的分类能力. 展开更多
关键词 机器学习 距离度量学习 SVM 图像匹配
下载PDF
有效距离在聚类算法中的应用 被引量:7
9
作者 光俊叶 刘明霞 张道强 《计算机科学与探索》 CSCD 北大核心 2017年第3期406-413,共8页
聚类分析是数据挖掘领域的重要组成部分之一,而度量学习是聚类分析中的关键性步骤。传统聚类算法中通常使用欧氏距离进行距离度量,但是欧氏距离只关注两两样本之间的距离关系,并没有顾及数据的全局性分布结构。考虑到数据的全局性结构信... 聚类分析是数据挖掘领域的重要组成部分之一,而度量学习是聚类分析中的关键性步骤。传统聚类算法中通常使用欧氏距离进行距离度量,但是欧氏距离只关注两两样本之间的距离关系,并没有顾及数据的全局性分布结构。考虑到数据的全局性结构信息,提出了一种新的具有全局性的度量方法——有效距离度量(effective distance metric),其主要思想是通过稀疏重构的方法计算数据样本之间的有效距离。进一步地,将有效距离应用到K-means、K-medoids和FCM(fuzzy C-means)3种经典聚类算法中开发了3种基于有效距离的聚类算法,即EK-means,EK-medoids和EFCM聚类算法。通过与传统聚类算法在UCI标准数据集上的实验结果进行比较,验证了基于有效距离的聚类算法能显著提高聚类效果。 展开更多
关键词 聚类 距离度量 度量学习 有效距离
下载PDF
行人重识别中度量学习方法研究进展 被引量:7
10
作者 邹国锋 傅桂霞 +2 位作者 高明亮 彭祥 刘征 《控制与决策》 EI CSCD 北大核心 2021年第7期1547-1557,共11页
行人重识别是计算机视觉领域极具挑战的研究课题.近年来,伴随大规模行人数据集推出和深度学习发展,针对行人特征提取与描述、距离度量学习两大关键技术的研究取得众多成果.已有综述文献主要对特征提取与描述方法开展了归纳总结,尚缺乏... 行人重识别是计算机视觉领域极具挑战的研究课题.近年来,伴随大规模行人数据集推出和深度学习发展,针对行人特征提取与描述、距离度量学习两大关键技术的研究取得众多成果.已有综述文献主要对特征提取与描述方法开展了归纳总结,尚缺乏对度量学习方法的全面分析.同时,鉴于度量学习在提升重识别性能中的关键作用,有必要对行人重识别中度量学习研究现状进行系统梳理.基于此,从距离度量方式、度量学习算法和重排序3方面系统总结了行人重识别度量学习方法,比较了部分典型方法的实验效果,并对未来可能的研究方向作了展望. 展开更多
关键词 行人重识别 距离度量 度量学习算法 重排序
原文传递
基于相似性度量的肺结节图像检索算法 被引量:7
11
作者 魏国辉 齐守良 +1 位作者 钱唯 张魁星 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第9期1226-1231,共6页
为了克服肺部病变CT表现复杂,极易造成医生误诊的缺点,提出了一种基于相似性度量的医学图像检索算法并用于肺癌的诊断研究,该相似性度量保持了图像的语义相关和视觉相似.首先,根据相似性度量理论构建距离度量学习算法学习一个马氏距离;... 为了克服肺部病变CT表现复杂,极易造成医生误诊的缺点,提出了一种基于相似性度量的医学图像检索算法并用于肺癌的诊断研究,该相似性度量保持了图像的语义相关和视觉相似.首先,根据相似性度量理论构建距离度量学习算法学习一个马氏距离;然后,根据学习的马氏距离度量,提出新的医学图像检索算法,并将提出的算法应用于肺癌的诊断研究.实验结果证明了该检索算法在肺癌诊断应用中的可行性和有效性. 展开更多
关键词 医学图像检索 肺癌 相似性度量 距离度量学习 纹理特征
下载PDF
基于距离尺度学习的新类识别方法 被引量:4
12
作者 谢茂强 黄亚楼 +2 位作者 殷爱茹 江皞 李栋 《模式识别与人工智能》 EI CSCD 北大核心 2009年第1期47-52,共6页
在在线分类任务中经常会出现新类别,导致数据分布发生显著变化,使得已有分类器不再适用.如何识别新类以使分类器能适应其出现已成为在线分类亟待解决的问题.本文提出基于距离尺度学习的识别偏离型新类的算法用于解决该问题.该方法能在... 在在线分类任务中经常会出现新类别,导致数据分布发生显著变化,使得已有分类器不再适用.如何识别新类以使分类器能适应其出现已成为在线分类亟待解决的问题.本文提出基于距离尺度学习的识别偏离型新类的算法用于解决该问题.该方法能在缺少先验知识的前提下自动识别新类,并较好地解决了样本间类别相似性同样本间距离不一致的问题,为分类器的自适应更新提供了关键技术.在多个数据集上的实验结果表明在客观新类出现后该方法能有效发现新类,可使更新后的分类器保持较高准确度,为实现适应新类的在线分类系统奠定坚实基础. 展开更多
关键词 新类识别 距离尺度学习 自适应分类
原文传递
基于距离度量学习的DCT域JPEG图像检索 被引量:6
13
作者 吕清秀 李弼程 高毫林 《太赫兹科学与电子信息学报》 2014年第1期112-118,共7页
由于特征有限,传统基于欧式距离的压缩域检索性能并不理想。本文引入距离度量学习技术,研究压缩域图像检索,提出了一种基于距离度量学习的离散余弦变换(DCT)域联合图像专家小组(JPEG)图像检索方法。首先,提出了一种更有效的DCT域特征提... 由于特征有限,传统基于欧式距离的压缩域检索性能并不理想。本文引入距离度量学习技术,研究压缩域图像检索,提出了一种基于距离度量学习的离散余弦变换(DCT)域联合图像专家小组(JPEG)图像检索方法。首先,提出了一种更有效的DCT域特征提取方法;其次,运用距离度量学习技术训练出一个更加有效的度量矩阵进行检索。在Corel5000上的图像检索实验表明,新方法有效提高了检索准确度。 展开更多
关键词 距离度量学习 图像检索 离散余弦变换域 联合图像专家小组图像
下载PDF
协方差测距算法在多维聚类分析中的优化研究 被引量:1
14
作者 刘云 张轶 郑文凤 《重庆大学学报》 CAS CSCD 北大核心 2023年第5期102-110,共9页
为了在多维聚类分析中运用有效距离度量方法表征数据对象的邻近度,提出一种协方差测距(covariance distance measure analysis,CDM)算法,首先,采用模糊C均值(fuzzy c-means,FCM)方法对数据对象赋予权值,得到每个样本点相对类别特征的隶... 为了在多维聚类分析中运用有效距离度量方法表征数据对象的邻近度,提出一种协方差测距(covariance distance measure analysis,CDM)算法,首先,采用模糊C均值(fuzzy c-means,FCM)方法对数据对象赋予权值,得到每个样本点相对类别特征的隶属度,再依据隶属度计算每个样本的差异度;其次,为了使类别分离最大化,用样本点同关联类别的协方差距离度量代替模糊聚类中欧式距离度量作为优化问题的第一个标准,使相似数据对象更为接近;最后,用样本点间的协方差距离度量作为第二个优化标准,使相异数据相互隔开,交替固定变量迭代计算最优解,使聚类指标和距离度量学习参数同时得到优化,获得更好的聚类结果。在不同数据集上的实验结果表明,与FCM-Sig和UNCA算法相比,CDM算法在聚类准确性和算法收敛性方面均有更好表现。 展开更多
关键词 聚类分析 协方差测距 模糊C均值 距离度量学习
下载PDF
一种融合语义距离的最近邻图像标注方法 被引量:5
15
作者 吴伟 高光来 聂建云 《计算机科学》 CSCD 北大核心 2015年第1期297-302,共6页
传统的基于最近邻的图像标注方法效果不佳,主要原因在于提取图像视觉特征时,损失了很多有价值的信息。提出了一种改进的最近邻分类模型。首先利用距离测度学习方法,引入图像的语义类别信息进行训练,生成新的语义距离;然后利用该距离对... 传统的基于最近邻的图像标注方法效果不佳,主要原因在于提取图像视觉特征时,损失了很多有价值的信息。提出了一种改进的最近邻分类模型。首先利用距离测度学习方法,引入图像的语义类别信息进行训练,生成新的语义距离;然后利用该距离对每一类图像进行聚类,生成多个类内的聚类中心;最后通过计算图像到各个聚类中心的语义距离来构建最近邻分类模型。在构建最近邻分类模型的整个过程中,都使用训练得到的语义距离来计算,这可以有效减少相同图像类内的变动和不同图像类之间的相似所造成的语义鸿沟。在ImageCLEF2012图像标注数据库上进行了实验,将本方法与传统分类模型和最新的方法进行了比较,验证了本方法的有效性。 展开更多
关键词 图像标注 特征提取 最近邻 距离测度学习 语义距离
下载PDF
基于典型相关分析和距离度量学习的零样本学习 被引量:5
16
作者 冀中 谢于中 庞彦伟 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2017年第8期813-820,共8页
零样本学习是一类特殊的图像分类问题,是指测试数据的类别在训练数据中没有出现的情况.为了更好地描述语义特征空间中图像特征和语义特征的距离关系,本文将距离度量学习引入零样本学习任务.具体而言,首先利用典型相关分析将样本的图像... 零样本学习是一类特殊的图像分类问题,是指测试数据的类别在训练数据中没有出现的情况.为了更好地描述语义特征空间中图像特征和语义特征的距离关系,本文将距离度量学习引入零样本学习任务.具体而言,首先利用典型相关分析将样本的图像特征和相应类别的语义特征映射至公共特征空间;然后,利用距离度量学习衡量图像特征和语义特征之间的距离;最后,使用最近邻分类器进行分类.通过在流行的Aw A和CUB数据集中的实验,证明了所提方法的有效性和鲁棒性. 展开更多
关键词 零样本学习 典型相关分析 距离度量学习 图像分类
下载PDF
基于度量学习的行人重识别综述
17
作者 黄海新 陶文博 杜亭亭 《沈阳理工大学学报》 CAS 2023年第5期1-10,17,共11页
行人重识别的主要目标是在多个摄像机拍摄的图片或视频中识别同一行人,在智能安防等领域的应用前景广阔,是近年来计算机视觉方向的热门研究课题之一。随着深度学习的高速发展以及行人数据集的多样化,行人重识别的研究取得了显著进展,涉... 行人重识别的主要目标是在多个摄像机拍摄的图片或视频中识别同一行人,在智能安防等领域的应用前景广阔,是近年来计算机视觉方向的热门研究课题之一。随着深度学习的高速发展以及行人数据集的多样化,行人重识别的研究取得了显著进展,涉及的技术主要包括两个部分:特征提取和度量学习。已有的行人重识别研究更加关注特征提取方面,对于度量学习的系统论述不多。有效的度量学习对于提高行人重识别的准确性至关重要,故对基于度量学习的行人重识别技术进行梳理与分析具有重要价值。本文对近年基于度量学习的行人重识别方法进行总结,主要归纳为两部分:度量方法与度量学习算法。其中度量方法可分为距离度量与基于超图的相似性度量,将两种方法在行人重识别公开数据集上进行性能对比;度量学习算法总结为经典度量学习算法与深度度量学习算法,对深度度量学习算法中的损失函数进行性能总结与对比。最后,分析了基于度量学习的行人重识别中存在的问题及发展方向。 展开更多
关键词 距离度量 经典度量学习 深度度量学习 行人重识别
下载PDF
一种基于度量距离学习的图像检索方法 被引量:5
18
作者 罗辛 邰晓英 +1 位作者 SHISHIBORI Masami KITA Kenji 《广西师范大学学报(自然科学版)》 CAS 北大核心 2007年第2期186-189,共4页
CBIR系统由于受图像低层特征的限制,制约了它的检索效果。机器学习和统计方法是一种有效的提高检索性能的方法,但通常需要大量的训练样本才能达到满意的检索精度。提出一种理想的距离度量函数,在对图像进行简单分类并提供少量训练样本... CBIR系统由于受图像低层特征的限制,制约了它的检索效果。机器学习和统计方法是一种有效的提高检索性能的方法,但通常需要大量的训练样本才能达到满意的检索精度。提出一种理想的距离度量函数,在对图像进行简单分类并提供少量训练样本的基础上,通过类的距离度量矩阵M的学习来考虑分量之间的相关性。这个度量导入二次最佳化问题的解,将训练样本类结构的倾斜最小化。试验结果表明,该方法能在学习样本极少的情况下提高检索的性能。 展开更多
关键词 CBIR 聚类 距离函数 度量学习 特征空间
下载PDF
正则化独立测度矩阵的行人再识别 被引量:5
19
作者 齐美彬 王运侠 +2 位作者 檀胜顺 刘皓 蒋建国 《模式识别与人工智能》 EI CSCD 北大核心 2016年第6期511-518,共8页
针对当前基于距离测度学习的行人再识别算法中因训练样本少而出现的过拟合问题,提出正则化独立测度矩阵的行人再识别算法.该算法首先在4个不同的颜色空间单独学习测度矩阵,然后分别对相应的测度矩阵进行正则化,测试样本通过正则化后的... 针对当前基于距离测度学习的行人再识别算法中因训练样本少而出现的过拟合问题,提出正则化独立测度矩阵的行人再识别算法.该算法首先在4个不同的颜色空间单独学习测度矩阵,然后分别对相应的测度矩阵进行正则化,测试样本通过正则化后的测度矩阵进行相似性度量,最后结合相似性度量结果得到最终相似度.实验表明,相比原有算法,文中算法在性能上有进一步提升,并可改善训练样本少时出现的过拟合问题. 展开更多
关键词 行人再识别 距离测度学习 过拟合 正则化 独立测度矩阵
下载PDF
基于并联卷积神经网络的高速铁路车体图像差异分类算法 被引量:4
20
作者 王志学 彭朝勇 +1 位作者 罗林 宋文伟 《铁道学报》 EI CAS CSCD 北大核心 2021年第10期53-59,共7页
对高速铁路的车体进行安全检查,是高速铁路安全运行的重要保障。但是由于高速铁路车体结构复杂,采集环境多变,导致基于机器视觉的传统检测方法很难提取到车体图片的正确特征。利用深度学习方法,采用卷积神经网络,建立一个并联的差异分... 对高速铁路的车体进行安全检查,是高速铁路安全运行的重要保障。但是由于高速铁路车体结构复杂,采集环境多变,导致基于机器视觉的传统检测方法很难提取到车体图片的正确特征。利用深度学习方法,采用卷积神经网络,建立一个并联的差异分类模型,用于检测车体差异部位是否发生异常。为提高识别的准确率,提出一种多形状训练方法;同时,针对此异常检测任务设计合适的损失函数,并加入距离度量的限制项。此外,在并联模型的基础上,建立一种复合并联模型,进一步提升模型性能。试验表明,该模型能够很好地克服光照、污渍、标记等伪异常,正确提取到图片对的差异信息,并对差异信息是否异常做出准确的判断。 展开更多
关键词 差异分类 卷积神经网络 深度学习 距离度量学习
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部