试验以模拟生物滞留系统为研究对象,运用^(15)N同位素示踪技术研究土壤不同氧化还原电位(Eh)和p H条件下硝酸盐异化还原为氨(DNRA)作用对氮的去除效果。结果表明:在土壤Eh为225~100 m V、0^-120 m V和-225^-340 m V条件下,随着Eh的降低...试验以模拟生物滞留系统为研究对象,运用^(15)N同位素示踪技术研究土壤不同氧化还原电位(Eh)和p H条件下硝酸盐异化还原为氨(DNRA)作用对氮的去除效果。结果表明:在土壤Eh为225~100 m V、0^-120 m V和-225^-340 m V条件下,随着Eh的降低,硝酸盐异化还原为氨(DNRA)作用增强;生物滞留系统中同时存在反硝化反应和DNRA作用,在0^-120 m V区间,更有利于反硝化作用的发生;在-225^-340 m V区间,更有利于DNRA作用的发生;生物滞留系统土壤p H为5~7的条件下,DNRA作用效果随着p H的增加而增强;在p H为7~9时,DNRA作用效果随着p H的增加而减弱;表明DNRA作用易在中性偏碱性的环境下发生。展开更多
硝酸盐异化还原成铵(Dissimilatory nitrate reduction to ammonium,DNRA)过程,是将易损失的NO-3-N转化为NH+4-N,而被植物或微生物重新吸收利用,从而有助于湿地沉积物的氮保留.本研究选取石臼漾人工湿地冬、夏两季沟壕中心、边缘表层沉...硝酸盐异化还原成铵(Dissimilatory nitrate reduction to ammonium,DNRA)过程,是将易损失的NO-3-N转化为NH+4-N,而被植物或微生物重新吸收利用,从而有助于湿地沉积物的氮保留.本研究选取石臼漾人工湿地冬、夏两季沟壕中心、边缘表层沉积物,采用高通量测序等分析方法,研究了DNRA细菌群落结构特征.研究结果表明:在空间尺度上,沟壕中心DNRA细菌丰度高于沟壕边缘,分别为(2.26±1.19)×109和(1.22±1.46)×109 copies·g^-1.在时间尺度上,冬夏两季样品中DNRA细菌丰度具有显著性差异(p<0.05).多样性分析表明,沟壕中心沉积物的DNRA群落丰富度高于沟壕边缘.所有样品中占比最高的DNRA属为Caldilinea(69.75%±3.64%)、Anaeromyxobacter(66.41%±1.19%).Caldilinea属在夏季样品的占比(39.78%±5.15%)高于冬季样品(29.98%±0.57%),而Anaeromyxobacter属在沟壕中心的占比(35.14%±0.83%)高于沟壕边缘(31.28%±0.76%),且小沟(34.33%±1.40%)高于大沟(32.08%±1.33%).主坐标分析(PcoA)结果表明,DNRA细菌群落结构具有明显的时间异质性.DNRA细菌丰度与有机质(TOM)、碳氮比(C/N)和含水率(MC)显著相关.本研究揭示了人工湿地沉积物中DNRA细菌的丰度、群落组成、多样性及其与环境因子的关系.展开更多
为研究典型旱地农田土壤硝酸盐异化还原成铵过程(Dissimilatory nitrate reduction to ammonium,DNRA)的群落组成,针对DNRA过程的功能基因nrfA进行高通量测序.根际和非根际、4种典型农作物共16个样品,质控后每个样品得到87000条序列,在...为研究典型旱地农田土壤硝酸盐异化还原成铵过程(Dissimilatory nitrate reduction to ammonium,DNRA)的群落组成,针对DNRA过程的功能基因nrfA进行高通量测序.根际和非根际、4种典型农作物共16个样品,质控后每个样品得到87000条序列,在相似度≥90%下划分到27952个OTUs,选取其中丰度较高的258个代表OTUs进行生态学分析.多样性分析(OTUs水平)结果表明:3/4的作物根际土壤样品中的DNRA群落丰富度、物种多样性和物种均匀度高于相应非根际样品,对比4种作物,粟作物根部土壤DNRA群落多样性最高,玉米作物非根际土壤最低.对代表OTUs进行分类,共定义到6个门(Phylum),19个属(Genus).其中相对丰度最高的3个属为Hyalangium(29.31%)、Chthoniobacter(20.33%)和Nitrospira(13.41%),表明三者在群落组成中占主导地位.结合土壤理化因子分析,DNRA群落相对丰度与NO^-_2-N、TN、含水率、TOM、pH及温度呈显著相关关系.本研究在一定程度上揭示了旱地农田土壤DNRA细菌的群落组成、多样性及与土壤环境因子的关系,为提高氮肥的利用效率和减小环境污染提供理论依据.展开更多
文摘试验以模拟生物滞留系统为研究对象,运用^(15)N同位素示踪技术研究土壤不同氧化还原电位(Eh)和p H条件下硝酸盐异化还原为氨(DNRA)作用对氮的去除效果。结果表明:在土壤Eh为225~100 m V、0^-120 m V和-225^-340 m V条件下,随着Eh的降低,硝酸盐异化还原为氨(DNRA)作用增强;生物滞留系统中同时存在反硝化反应和DNRA作用,在0^-120 m V区间,更有利于反硝化作用的发生;在-225^-340 m V区间,更有利于DNRA作用的发生;生物滞留系统土壤p H为5~7的条件下,DNRA作用效果随着p H的增加而增强;在p H为7~9时,DNRA作用效果随着p H的增加而减弱;表明DNRA作用易在中性偏碱性的环境下发生。
文摘为研究典型旱地农田土壤硝酸盐异化还原成铵过程(Dissimilatory nitrate reduction to ammonium,DNRA)的群落组成,针对DNRA过程的功能基因nrfA进行高通量测序.根际和非根际、4种典型农作物共16个样品,质控后每个样品得到87000条序列,在相似度≥90%下划分到27952个OTUs,选取其中丰度较高的258个代表OTUs进行生态学分析.多样性分析(OTUs水平)结果表明:3/4的作物根际土壤样品中的DNRA群落丰富度、物种多样性和物种均匀度高于相应非根际样品,对比4种作物,粟作物根部土壤DNRA群落多样性最高,玉米作物非根际土壤最低.对代表OTUs进行分类,共定义到6个门(Phylum),19个属(Genus).其中相对丰度最高的3个属为Hyalangium(29.31%)、Chthoniobacter(20.33%)和Nitrospira(13.41%),表明三者在群落组成中占主导地位.结合土壤理化因子分析,DNRA群落相对丰度与NO^-_2-N、TN、含水率、TOM、pH及温度呈显著相关关系.本研究在一定程度上揭示了旱地农田土壤DNRA细菌的群落组成、多样性及与土壤环境因子的关系,为提高氮肥的利用效率和减小环境污染提供理论依据.