This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design metho...This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements ofT-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.展开更多
Cracks in rock or soil slopes influence the stability and durability of the slopes. Seismic forces can trigger slope disasters, particularly in the cracked slopes. Considering the nonlinear characteristics of material...Cracks in rock or soil slopes influence the stability and durability of the slopes. Seismic forces can trigger slope disasters, particularly in the cracked slopes. Considering the nonlinear characteristics of materials, the more generalized nonlinear failure criterion proposed by Baker is adopted. The influence of non-dimensional strength parameters on the stability of cracked slopes under earthquakes is performed using the upper bound limit analysis. The seismic displacement is calculated by adopting the logarithmic spiral failure surface according to the sliding rigid block model. Based on the existing studies, two methods for the stability analysis of cracked slopes under earthquakes are introduced: the pseudo-static method(with the factor of safety(Fs) as an evaluation index), and the displacement-based method(with the seismic displacement as an evaluation index). The pseudo-static method can only determine the instantaneous stability state of the cracked slope, yet the displacement-based methodreflects the stability variation of cracked slopes during earthquakes. The results indicate that the nondimensional strength parameters affect the factor of safety and seismic displacement of slopes significantly. The non-dimensional strength parameter(n) controlling the curvature of strength function shapes on the slope stability is affected by other parameters. Owing to cracks, the effect of non-dimensional strength parameters on seismic displacement becomes more significant.展开更多
The last decade or so has seen the development of refined performance-based earthquake engineering(PBEE) approaches that now provide a framework for estimation of a range of important decision variables,such as repair...The last decade or so has seen the development of refined performance-based earthquake engineering(PBEE) approaches that now provide a framework for estimation of a range of important decision variables,such as repair costs,repair time and number of casualties. This paper reviews current tools for PBEE,including the PACT software,and examines the possibility of extending the innovative displacement-based assessment approach as a simplified structural analysis option for performance assessment. Details of the displacement-based s+eismic assessment method are reviewed and a simple means of quickly assessing multiple hazard levels is proposed. Furthermore,proposals for a simple definition of collapse fragility and relations between equivalent single-degree-of-freedom characteristics and multi-degree-of-freedom story drift and floor acceleration demands are discussed,highlighting needs for future research. To illustrate the potential of the methodology,performance measures obtained from the simplified method are compared with those computed using the results of incremental dynamic analyses within the PEER performance-based earthquake engineering framework,applied to a benchmark building. The comparison illustrates that the simplified method could be a very effective conceptual seismic design tool. The advantages and disadvantages of the simplified approach are discussed and potential implications of advanced seismic performance assessments for conceptual seismic design are highlighted through examination of different case study scenarios including different structural configurations.展开更多
Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logi...Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.展开更多
Previous research has shown that using buckling-restrained braces(BRBs)at hinged wall(HW)base(HWBB)can effectively mitigate lateral deformation of steel moment-resisting frames(MRFs)in earthquakes.Forcebased and displ...Previous research has shown that using buckling-restrained braces(BRBs)at hinged wall(HW)base(HWBB)can effectively mitigate lateral deformation of steel moment-resisting frames(MRFs)in earthquakes.Forcebased and displacement-based design methods have been proposed to design HWBB to strengthen steel MRF and this paper comprehensively compares these two design methods,in terms of design steps,advantages/disadvantages,and structure responses.In addition,this paper investigates the building height below which the HW seismic moment demand can be properly controlled.First,3-story,9-story,and 20-story steel MRFs in the SAC project are used as benchmark steel MRFs.Secondly,HWs and HWBBs are designed to strengthen the benchmark steel MRFs using force-based and displacement-based methods,called HWFs and HWBBFs,respectively.Thirdly,nonlinear time history analyses are conducted to compare the structural responses of the MRFs,HWBBFs and HWFs in earthquakes.The results show the following.1)HW seismic force demands increase as structural height increases,which may lead to uneconomical HW design.The HW seismic moment demand can be properly controlled when the building is lower than nine stories.2)The displacement-based design method is recommended due to the benefit of identifying unfeasible component dimensions during the design process,as well as better achieving the design target displacement.展开更多
Current design criteria and prineiples of earthquake engineering design are reviewed,including safety factors, probabilistic approach,and two-level and muhi-level functional design ideas.The modern multi-functional id...Current design criteria and prineiples of earthquake engineering design are reviewed,including safety factors, probabilistic approach,and two-level and muhi-level functional design ideas.The modern multi-functional idea is discussed in greater details.When designing a structure,its resistance to and the intensity of the earthquake action are considered. The consequence of failure of the structure is considered only through a rough and empirical factor of importance,ranging usually from 1.0 to 1.5.This paper suggests a method of'consequence-based design,'which considers the consequences of malfunctioning instead of simply an importance factor.The main argument for this method is that damage to a structure located in different types of societies may have very different consequences,which are depeudant on its value and usefulness to the society and the seismicity in the region.展开更多
In displacement-based seismic design, constant-ductility strength demand spectra (CDSDS) are very useful for preliminary design of new structures where the global displacement ductility capacity is known. The CDSDS ...In displacement-based seismic design, constant-ductility strength demand spectra (CDSDS) are very useful for preliminary design of new structures where the global displacement ductility capacity is known. The CDSDS can provide the required inelastic lateral strength of new structures from the required elastic lateral strength. Based on a statistical study of nonlinear time-history for an SDOF system, the mean CDSDS corresponding to four site conditions are presented and approximate expressions of the inelastic spectra are proposed, which are functions of the structural period and ductility level. The effects of site conditions, structural period, level of ductility, damping and post-yield stiffness of structures on CDSDS are also investigated. It is concluded that site conditions, ductility level and structural period have important effects on the CDSDS and damping, post-yield stiffness effects are rather complex and of minor importance. The damping, post-yield stiffness effects depend on both the level of ductility and the natural period of structures.展开更多
基金International Science&Technology Cooperation Program of China under Grant No.2014DFA70950Tsinghua University Initiative Scientific Research Program under Grant No.2012THZ02-1National Natural Science Foundation of China under Grant No.91315301
文摘This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements ofT-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.
基金financially supported by the National Key Research and Development Program of China (2017YFC1501001)National Natural Science Foundation of China (51478477, 41672286, 51408511, 41530639 and 41761144080)+1 种基金Science & Technology Department of Sichuan Province(2017JQ0042)the program of China Scholarship Council
文摘Cracks in rock or soil slopes influence the stability and durability of the slopes. Seismic forces can trigger slope disasters, particularly in the cracked slopes. Considering the nonlinear characteristics of materials, the more generalized nonlinear failure criterion proposed by Baker is adopted. The influence of non-dimensional strength parameters on the stability of cracked slopes under earthquakes is performed using the upper bound limit analysis. The seismic displacement is calculated by adopting the logarithmic spiral failure surface according to the sliding rigid block model. Based on the existing studies, two methods for the stability analysis of cracked slopes under earthquakes are introduced: the pseudo-static method(with the factor of safety(Fs) as an evaluation index), and the displacement-based method(with the seismic displacement as an evaluation index). The pseudo-static method can only determine the instantaneous stability state of the cracked slope, yet the displacement-based methodreflects the stability variation of cracked slopes during earthquakes. The results indicate that the nondimensional strength parameters affect the factor of safety and seismic displacement of slopes significantly. The non-dimensional strength parameter(n) controlling the curvature of strength function shapes on the slope stability is affected by other parameters. Owing to cracks, the effect of non-dimensional strength parameters on seismic displacement becomes more significant.
文摘The last decade or so has seen the development of refined performance-based earthquake engineering(PBEE) approaches that now provide a framework for estimation of a range of important decision variables,such as repair costs,repair time and number of casualties. This paper reviews current tools for PBEE,including the PACT software,and examines the possibility of extending the innovative displacement-based assessment approach as a simplified structural analysis option for performance assessment. Details of the displacement-based s+eismic assessment method are reviewed and a simple means of quickly assessing multiple hazard levels is proposed. Furthermore,proposals for a simple definition of collapse fragility and relations between equivalent single-degree-of-freedom characteristics and multi-degree-of-freedom story drift and floor acceleration demands are discussed,highlighting needs for future research. To illustrate the potential of the methodology,performance measures obtained from the simplified method are compared with those computed using the results of incremental dynamic analyses within the PEER performance-based earthquake engineering framework,applied to a benchmark building. The comparison illustrates that the simplified method could be a very effective conceptual seismic design tool. The advantages and disadvantages of the simplified approach are discussed and potential implications of advanced seismic performance assessments for conceptual seismic design are highlighted through examination of different case study scenarios including different structural configurations.
文摘Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.
基金financially supported by the National Natural Science Foundation of China(Grant No.51708166)the Natural Science Foundation of Anhui Province(No.2208085ME150).
文摘Previous research has shown that using buckling-restrained braces(BRBs)at hinged wall(HW)base(HWBB)can effectively mitigate lateral deformation of steel moment-resisting frames(MRFs)in earthquakes.Forcebased and displacement-based design methods have been proposed to design HWBB to strengthen steel MRF and this paper comprehensively compares these two design methods,in terms of design steps,advantages/disadvantages,and structure responses.In addition,this paper investigates the building height below which the HW seismic moment demand can be properly controlled.First,3-story,9-story,and 20-story steel MRFs in the SAC project are used as benchmark steel MRFs.Secondly,HWs and HWBBs are designed to strengthen the benchmark steel MRFs using force-based and displacement-based methods,called HWFs and HWBBFs,respectively.Thirdly,nonlinear time history analyses are conducted to compare the structural responses of the MRFs,HWBBFs and HWFs in earthquakes.The results show the following.1)HW seismic force demands increase as structural height increases,which may lead to uneconomical HW design.The HW seismic moment demand can be properly controlled when the building is lower than nine stories.2)The displacement-based design method is recommended due to the benefit of identifying unfeasible component dimensions during the design process,as well as better achieving the design target displacement.
文摘Current design criteria and prineiples of earthquake engineering design are reviewed,including safety factors, probabilistic approach,and two-level and muhi-level functional design ideas.The modern multi-functional idea is discussed in greater details.When designing a structure,its resistance to and the intensity of the earthquake action are considered. The consequence of failure of the structure is considered only through a rough and empirical factor of importance,ranging usually from 1.0 to 1.5.This paper suggests a method of'consequence-based design,'which considers the consequences of malfunctioning instead of simply an importance factor.The main argument for this method is that damage to a structure located in different types of societies may have very different consequences,which are depeudant on its value and usefulness to the society and the seismicity in the region.
基金Research Fund for the Doctoral Program of Higher Education (20030213042) and Heilongjiang Natural Science Foundation Under Grant No.ZJG03-03
文摘In displacement-based seismic design, constant-ductility strength demand spectra (CDSDS) are very useful for preliminary design of new structures where the global displacement ductility capacity is known. The CDSDS can provide the required inelastic lateral strength of new structures from the required elastic lateral strength. Based on a statistical study of nonlinear time-history for an SDOF system, the mean CDSDS corresponding to four site conditions are presented and approximate expressions of the inelastic spectra are proposed, which are functions of the structural period and ductility level. The effects of site conditions, structural period, level of ductility, damping and post-yield stiffness of structures on CDSDS are also investigated. It is concluded that site conditions, ductility level and structural period have important effects on the CDSDS and damping, post-yield stiffness effects are rather complex and of minor importance. The damping, post-yield stiffness effects depend on both the level of ductility and the natural period of structures.