期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
低渗透油气藏水平井分段多簇压裂簇间距优化新方法 被引量:20
1
作者 赵金洲 许文俊 +2 位作者 李勇明 蔡坤赤 徐苗 《天然气工业》 EI CAS CSCD 北大核心 2016年第10期63-69,共7页
水平井分段多簇压裂中簇间距的大小是决定水平井分段多簇压裂成败的关键因素。为提高低渗透油气藏储层压裂改造效果,需建立合理的簇间距优化模型,而现有的优化方法多以应力反转半径作为最佳间距,并未定量化表征压裂后的储层改造效果。为... 水平井分段多簇压裂中簇间距的大小是决定水平井分段多簇压裂成败的关键因素。为提高低渗透油气藏储层压裂改造效果,需建立合理的簇间距优化模型,而现有的优化方法多以应力反转半径作为最佳间距,并未定量化表征压裂后的储层改造效果。为此,基于弹性力学基础理论和位移不连续法建立了考虑水力裂缝干扰模式下的复杂地应力场计算模型,研究了天然裂缝在复杂地应力场条件下发生张开和剪切破裂形成复杂裂缝网络的规律,再以获得最大缝网波及区域面积为优化目标,形成一种新的簇间距优化方法。研究结果表明:(1)张开的水力裂缝会在其周围产生诱导应力,压裂液的滤失则会导致地层孔隙压力变化,相应的地层孔隙弹性应力也会发生变化;(2)天然裂缝剪切破裂区域与张开破裂区域重叠,且前者要远大于后者,可采用天然裂缝剪切破裂区域面积来表征复杂裂缝网络波及区域的大小。采用该方法指导了现场水平井的簇间距优化设计,实验井压裂后取得了理想的增产效果,为低渗透油气藏水平井分段多簇压裂的簇间距优化设计提供了借鉴和指导。 展开更多
关键词 低渗透油气藏 分段多簇压裂 簇间距优化 位移不连续法 天然裂缝 破裂区域 波及区域 缝网 增产效果
下载PDF
DDM regression analysis of the in-situ stress field in a non-linear fault zone 被引量:9
2
作者 Ke Li Ying-yi Wang Xing-chun Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第7期567-573,共7页
A multivariable regression analysis of the in-situ stress field, which considers the non-linear deformation behavior of faults in practical projects, is presented based on a newly developed three-dimensional displacem... A multivariable regression analysis of the in-situ stress field, which considers the non-linear deformation behavior of faults in practical projects, is presented based on a newly developed three-dimensional displacement discontinuity method (DDM) program. The Bar- ton-Bandis model and the Kulhaway model are adopted as the normal and the tangential deformation model of faults, respectively, where the Mohr-Coulomb failure criterion is satisfied. In practical projects, the values of the mechanical parameters of rock and faults are restricted in a bounded range for in-situ test, and the optimal mechanical parameters are obtained from this range by a loop. Comparing with the traditional finite element method (FEM), the DDM regression results are more accurate. 展开更多
关键词 displacement discontinuity method ddm in-situ stress regression analysis FAULTS ROCK
下载PDF
三维FSM·DDM边界元法 被引量:4
3
作者 刘承论 秦忠诚 时洪斌 《岩土力学》 EI CAS CSCD 北大核心 2004年第z1期47-51,共5页
对三维FSMDDM边界元数值模拟系统进行了基础研究,开发了单一介质的三维弹性问题的FSMDDM边界元数值模拟系统和多介质三维FSMDDM边界元数值模拟系统,通过验证和实际工程应用取得了满意的效果。
关键词 边界元 应力不连续 位移不连续 多介质
下载PDF
Mapped Displacement Discontinuity Method:Numerical Implementation and Analysis for Crack Problems 被引量:1
4
作者 姜锋 沈泳星 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第1期158-165,共8页
The displacement discontinuity method(DDM) is a kind of boundary element method aiming at modeling two-dimensional linear elastic crack problems. The singularity around the crack tip prevents the DDM from optimally co... The displacement discontinuity method(DDM) is a kind of boundary element method aiming at modeling two-dimensional linear elastic crack problems. The singularity around the crack tip prevents the DDM from optimally converging when the basis functions are polynomials of first order or higher. To overcome this issue,enlightened by the mapped finite element method(FEM) proposed in Ref. [13], we present an optimally convergent mapped DDM in this work, called the mapped DDM(MDDM). It is essentially based on approximating a much smoother function obtained by reformulating the problem with an appropriate auxiliary map. Two numerical examples of crack problems are presented in comparison with the conventional DDM. The results show that the proposed method improves the accuracy of the DDM; moreover, it yields an optimal convergence rate for quadratic interpolating polynomials. 展开更多
关键词 displacement discontinuity method(ddm) SINGULARITY auxiliary map convergence rate Hadamard finite part
原文传递
Numerical Simulation of Non-linear Joint Using Displacement Discontinuity Method
5
作者 李科 王颖轶 黄醒春 《Journal of Donghua University(English Edition)》 EI CAS 2012年第4期295-298,共4页
An iterative algorithm for modeling of non-linear joint by the displacement discontinuity method (DDM) was described, and the effect of the non-linear joint on the in-situ stress field was investigated in this paper. ... An iterative algorithm for modeling of non-linear joint by the displacement discontinuity method (DDM) was described, and the effect of the non-linear joint on the in-situ stress field was investigated in this paper. The Barton-Bandis (BB) non-linear joint model and failure criterion were adopted in the new DDM program. Using this program, the stress field around the non-linear joint was obtained, the parameters analysis of the joint was carried out, and the deformation and stress distribution of the joint were studied. The simulation results show that: (1)the in-situ stress is significantly affected by the joint; (2)the increase of stiffness, friction angle, and thickness of the joint affect the stress concentration in different ways; (3)the influence distance of the joint changes with the angle of the joint; (4)the deformation and stress of the joint change with the point position. 展开更多
关键词 displacement discontinuity method ddm non-linear joint model.. Hnear Joint model: stress field: disolacement field
下载PDF
Analysis of fracture propagation and shale gas production by intensive volume fracturing 被引量:1
6
作者 Qingdong ZENG Long BO +4 位作者 Lijun LIU Xuelong LI Jianmeng SUN Zhaoqin HUANG Jun YAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1385-1408,共24页
This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation... This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation model takes into account the interaction between hydraulic fracture and natural fracture by means of the displacement discontinuity method(DDM)and the Picard iterative method.The shale gas flow considers multiple transport mechanisms,and the flow in the fracture network is handled by the embedded discrete fracture model(EDFM).A series of numerical simulations are conducted to analyze the effects of the cluster number,stage spacing,stress difference coefficient,and natural fracture distribution on the stimulated fracture area,fractal dimension,and cumulative gas production,and their correlation coefficients are obtained.The results show that the most influential factors to the stimulated fracture area are the stress difference ratio,stage spacing,and natural fracture density,while those to the cumulative gas production are the stress difference ratio,natural fracture density,and cluster number.This indicates that the stress condition dominates the gas production,and employing intensive volume fracturing(by properly increasing the cluster number)is beneficial for improving the final cumulative gas production. 展开更多
关键词 fracture network propagation shale gas fow intensive volume fracturing displacement discontinuity method(ddm) embedded discrete fracture model(EDFM)
下载PDF
A Study on Propagation Mechanism of Fracture Systems in Rock Masses by Discontinuity Displacement Method
7
作者 Tang HuimingChina University of Geosciences . Wihan 430074 《Journal of Earth Science》 SCIE CAS CSCD 1993年第1期111-114,共4页
The main task of fracture mechanics of rock masses is the study on the propagating mechanism of fractures in rock masses , which can be efficiently conducted by discontinuty displacement (DD) numerical evaluation . Fi... The main task of fracture mechanics of rock masses is the study on the propagating mechanism of fractures in rock masses , which can be efficiently conducted by discontinuty displacement (DD) numerical evaluation . Firstly ,the element stress and displacement are analysed and the principle and steps of the numerical calculation of stress intensity factor and fracture extension force are introduced .The numerical results of parallel and echelon fracture systems ,which are compared with real field fractures .are presented. Finally . a simple engineering application example is presented . 展开更多
关键词 fracture mechanics of rock masses discontinuity displacement method (ddm ) stress- intensity factor fracture extension force parallel fracture echelon fracture .
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部