A double paddle blender's flow patterns and mixing mechanisms were analyzed using discrete element method(DEM)and experiments.The mixing performance of this type of the blender containing bi-disperse particles has...A double paddle blender's flow patterns and mixing mechanisms were analyzed using discrete element method(DEM)and experiments.The mixing performance of this type of the blender containing bi-disperse particles has been rarely studied in the literature.Plackett-Burman design of experiments(DoE)methodology was used to calibrate the DEM input parameters.Subsequently,the impact of the particle number ratio,vessel fill level,and paddle rotational speed on mixing performance was investigated using the calibrated DEM model.The mixing performance was assessed using relative standard deviation and segregation intensity.Mixing performance was significantly affected by the paddle rotational speed and particle number ratio.Moreover,the Peclet number and diffusivity coefficient were used to evaluate the mixing mechanism in the blender.Results revealed that the diffusion was the predominant mixing mechanism,and the best mixing performance was observed when the diffusivity coefficients of 3 mm and 5 mm particles were almost equal.展开更多
The influence of the precipitating reagents and dispersants on the formation of nano-aluminum hydroxide from sodium aluminate solution by chemical precipitation was investigated. The influence of the dispersed seeds o...The influence of the precipitating reagents and dispersants on the formation of nano-aluminum hydroxide from sodium aluminate solution by chemical precipitation was investigated. The influence of the dispersed seeds on the decomposi-tion process was investigated too. The alkaline aluminate solutions were used as original solutions with a concentration of Al2O3 having 14.78 g/dm3, αk—1.6 and127 g/dm3, αk—1.6. For the precipitation processes there were used follow-ing precipitating reagents—solutions HCl, NaHCO3 and NH4HCO3 with a concentration of 80 g/dm3, dispersants—PEG 6000, (NaPO3)6 and Tween 20. For the decomposition process the dispersed seeds and factories seeds were used. Structural studies of the aluminum hydroxide particles were carried out by means of the electron-probe microanalysis and scanning electron microscopy, and phase composition of products was determined by means of X-ray diffraction analysis. Ammonium bicarbonate and Tween 20 were determined as the optimal precipitating reagent and dispersant, correspondingly, resulting in dispersed aluminum hydroxide, which is used as a seed in the decomposition process. It was established that this product in form of dispersed seed considerably reduces the duration of the decomposition process;the maximal decomposition of solution (73.9%) was observed after injection of dispersеd aluminum hydroxide into solution. The final aluminum hydroxide having 90% of particles less than 100 nanometers was obtained within 7 hours of steady decreasing temperature from 70°C to 48°C.展开更多
Lithium(Li)-O_(2)batteries have triggered worldwide interest due to their ultrahigh theoretical energy density.However,it is a long shot for the grand-scale applications of Li-O_(2)battery at current stage owing to it...Lithium(Li)-O_(2)batteries have triggered worldwide interest due to their ultrahigh theoretical energy density.However,it is a long shot for the grand-scale applications of Li-O_(2)battery at current stage owing to its significant polarization,inferior cycling life,and irreversible decomposition of Li2O_(2).Herein,a facile way of preparing the highly dispersed Co-based nanoparticles encapsulated into porous N-doping carbon polyhedral with the low content of Ru modification(LRu@HDCo-NC)is explored through the pyrolysis of Co/Zn based zeolitic imidazole frameworks(ZIFs)containing Ru-based ligands.Even with the very small amount of Ru introduction(1.8%),LRu@HDCo-NC still exhibits the superior oxygen evolution reaction/oxygen reduction reaction(OER/ORR)performance and also inhibits side reactions in Li-O_(2)battery because of the abundant pores,plentiful surface N heteroatoms,and highly dispersed metal-based sites which are induced by the volatilization of Zn,and conductive/stable carbon skeleton derived from ZIFs.When applied in Li-O_(2)batteries,LRu@HDCo-NC cathode delivers a high discharge capacity of 15,973 mAh·g^(-1)at 200 mA·g^(-1),good capacity retention at higher rate(12,362 mAh·g^(-1)at 500 mA·g^(-1))and outstanding stability for>300 cycles with low voltage polarization of<2.3 V under a cut-off capacity of 1,000 mAh·g^(-1)at 500 mA·g^(-1).More critically,a series of ex situ and in situ characterization technologies disclose that the LRu@HDCo-NC cathodes can effectively promote the reversible reactions in Li-O_(2)batteries.展开更多
A three-dimensional heterogeneous mass transfer model was proposed to investigate the enhancement of dispersed particles on gas absorption. The strategy to calculate local and overall enhancement factors is proposed. ...A three-dimensional heterogeneous mass transfer model was proposed to investigate the enhancement of dispersed particles on gas absorption. The strategy to calculate local and overall enhancement factors is proposed. Instead of a global grid, the composite overlapping grid is adopted, which simplifies the setup and solution of the three-dimensional model equations. It is found that dispersed particle hold-up, particle size, liquid-solid partition coefficient of transported component, characteristic contact time, and the shortest distance between particles and gas-liquid interface have major influence on absorption enhancement factor. The particle-particle interaction on gas absorption and the lateral diffusion of transported component in liquid film were studied with the multi-particle simulation. The proposed model predicted the experimental data from the literature reasonably well.展开更多
Fast ionic conductors are one kind of solid state material with ionic conductivity as high as that of melten salts or liquid electrolytes.Ionic conductivity is one of the important parameters for characterizing a fast...Fast ionic conductors are one kind of solid state material with ionic conductivity as high as that of melten salts or liquid electrolytes.Ionic conductivity is one of the important parameters for characterizing a fast ionic conductor.For a long time materialists and chemists have made great efforts in search of new fast ionic conductors with high ionic conductivity.In view of structure,they have synthesised silver and copper fast ionic conductors with so called open structures.But it is not so successful for searching more applicable alkaline fast ionic conductors.Since polymer has flexibility for making thin film,it concentrates attention on the polymer-alkaline salt complex.Fenton et al.have first reported poly(ethylene oxide) (PEO)-alkaline salt complex.Later on Armard et al.have investigated the electrical property of PEO-NaSCN.展开更多
采用机械搅拌与超声波的技术提纯凹凸土,提高凹凸土的纯度以改善其分散性。并用透射电子显微镜(TEM)、扫描电子显微镜(SEM)观察了凹凸土的显微结构,用Image Pro Plus软件对TEM图片进行凹凸土粒径和长度分布分析,用德国生产NETZSCHTG209...采用机械搅拌与超声波的技术提纯凹凸土,提高凹凸土的纯度以改善其分散性。并用透射电子显微镜(TEM)、扫描电子显微镜(SEM)观察了凹凸土的显微结构,用Image Pro Plus软件对TEM图片进行凹凸土粒径和长度分布分析,用德国生产NETZSCHTG209对凹凸土进行了热失重分析。实验结果表明,与商品凹凸土相比较,提纯凹凸土中的杂质明显减少,凹凸棒更细更短,分散更均匀;商品凹凸棒土的长度在400~1000nm,平均在700nm左右,宽度在10~35nm,平均在20nm左右;提纯凹凸棒土的长度也在400~1000nm,平均在700nm左右,宽度在5~30nm,平均在15nm左右,提纯凹凸土的长度、粒径比商品凹凸棒土的长度、粒径分布更集中;提纯凹凸土和商品凹凸土的热失重性质相差不大,凹凸土热失重曲线有4个突变,温度达到780℃时,失重达17%左右。展开更多
文摘A double paddle blender's flow patterns and mixing mechanisms were analyzed using discrete element method(DEM)and experiments.The mixing performance of this type of the blender containing bi-disperse particles has been rarely studied in the literature.Plackett-Burman design of experiments(DoE)methodology was used to calibrate the DEM input parameters.Subsequently,the impact of the particle number ratio,vessel fill level,and paddle rotational speed on mixing performance was investigated using the calibrated DEM model.The mixing performance was assessed using relative standard deviation and segregation intensity.Mixing performance was significantly affected by the paddle rotational speed and particle number ratio.Moreover,the Peclet number and diffusivity coefficient were used to evaluate the mixing mechanism in the blender.Results revealed that the diffusion was the predominant mixing mechanism,and the best mixing performance was observed when the diffusivity coefficients of 3 mm and 5 mm particles were almost equal.
文摘The influence of the precipitating reagents and dispersants on the formation of nano-aluminum hydroxide from sodium aluminate solution by chemical precipitation was investigated. The influence of the dispersed seeds on the decomposi-tion process was investigated too. The alkaline aluminate solutions were used as original solutions with a concentration of Al2O3 having 14.78 g/dm3, αk—1.6 and127 g/dm3, αk—1.6. For the precipitation processes there were used follow-ing precipitating reagents—solutions HCl, NaHCO3 and NH4HCO3 with a concentration of 80 g/dm3, dispersants—PEG 6000, (NaPO3)6 and Tween 20. For the decomposition process the dispersed seeds and factories seeds were used. Structural studies of the aluminum hydroxide particles were carried out by means of the electron-probe microanalysis and scanning electron microscopy, and phase composition of products was determined by means of X-ray diffraction analysis. Ammonium bicarbonate and Tween 20 were determined as the optimal precipitating reagent and dispersant, correspondingly, resulting in dispersed aluminum hydroxide, which is used as a seed in the decomposition process. It was established that this product in form of dispersed seed considerably reduces the duration of the decomposition process;the maximal decomposition of solution (73.9%) was observed after injection of dispersеd aluminum hydroxide into solution. The final aluminum hydroxide having 90% of particles less than 100 nanometers was obtained within 7 hours of steady decreasing temperature from 70°C to 48°C.
基金The authors acknowledge funding support from the National Natural Science Foundation of China(Nos.21905151 and 51772162)Youth Innovation and Technology Foundation of Shandong Higher Education Institutions,China(No.2019KJC004)+2 种基金Outstanding Youth Foundation of Shandong Province,China(No.ZR2019JQ14)Taishan Scholar Young Talent Program,Major Scientific and Technological Innovation Project(No.2019JZZY020405)the Postdoctoral Science Foundation of China(No.2019M652499).
文摘Lithium(Li)-O_(2)batteries have triggered worldwide interest due to their ultrahigh theoretical energy density.However,it is a long shot for the grand-scale applications of Li-O_(2)battery at current stage owing to its significant polarization,inferior cycling life,and irreversible decomposition of Li2O_(2).Herein,a facile way of preparing the highly dispersed Co-based nanoparticles encapsulated into porous N-doping carbon polyhedral with the low content of Ru modification(LRu@HDCo-NC)is explored through the pyrolysis of Co/Zn based zeolitic imidazole frameworks(ZIFs)containing Ru-based ligands.Even with the very small amount of Ru introduction(1.8%),LRu@HDCo-NC still exhibits the superior oxygen evolution reaction/oxygen reduction reaction(OER/ORR)performance and also inhibits side reactions in Li-O_(2)battery because of the abundant pores,plentiful surface N heteroatoms,and highly dispersed metal-based sites which are induced by the volatilization of Zn,and conductive/stable carbon skeleton derived from ZIFs.When applied in Li-O_(2)batteries,LRu@HDCo-NC cathode delivers a high discharge capacity of 15,973 mAh·g^(-1)at 200 mA·g^(-1),good capacity retention at higher rate(12,362 mAh·g^(-1)at 500 mA·g^(-1))and outstanding stability for>300 cycles with low voltage polarization of<2.3 V under a cut-off capacity of 1,000 mAh·g^(-1)at 500 mA·g^(-1).More critically,a series of ex situ and in situ characterization technologies disclose that the LRu@HDCo-NC cathodes can effectively promote the reversible reactions in Li-O_(2)batteries.
基金Supported by the National Natural Science Foundation of China (No. 20136010).
文摘A three-dimensional heterogeneous mass transfer model was proposed to investigate the enhancement of dispersed particles on gas absorption. The strategy to calculate local and overall enhancement factors is proposed. Instead of a global grid, the composite overlapping grid is adopted, which simplifies the setup and solution of the three-dimensional model equations. It is found that dispersed particle hold-up, particle size, liquid-solid partition coefficient of transported component, characteristic contact time, and the shortest distance between particles and gas-liquid interface have major influence on absorption enhancement factor. The particle-particle interaction on gas absorption and the lateral diffusion of transported component in liquid film were studied with the multi-particle simulation. The proposed model predicted the experimental data from the literature reasonably well.
文摘Fast ionic conductors are one kind of solid state material with ionic conductivity as high as that of melten salts or liquid electrolytes.Ionic conductivity is one of the important parameters for characterizing a fast ionic conductor.For a long time materialists and chemists have made great efforts in search of new fast ionic conductors with high ionic conductivity.In view of structure,they have synthesised silver and copper fast ionic conductors with so called open structures.But it is not so successful for searching more applicable alkaline fast ionic conductors.Since polymer has flexibility for making thin film,it concentrates attention on the polymer-alkaline salt complex.Fenton et al.have first reported poly(ethylene oxide) (PEO)-alkaline salt complex.Later on Armard et al.have investigated the electrical property of PEO-NaSCN.
文摘采用机械搅拌与超声波的技术提纯凹凸土,提高凹凸土的纯度以改善其分散性。并用透射电子显微镜(TEM)、扫描电子显微镜(SEM)观察了凹凸土的显微结构,用Image Pro Plus软件对TEM图片进行凹凸土粒径和长度分布分析,用德国生产NETZSCHTG209对凹凸土进行了热失重分析。实验结果表明,与商品凹凸土相比较,提纯凹凸土中的杂质明显减少,凹凸棒更细更短,分散更均匀;商品凹凸棒土的长度在400~1000nm,平均在700nm左右,宽度在10~35nm,平均在20nm左右;提纯凹凸棒土的长度也在400~1000nm,平均在700nm左右,宽度在5~30nm,平均在15nm左右,提纯凹凸土的长度、粒径比商品凹凸棒土的长度、粒径分布更集中;提纯凹凸土和商品凹凸土的热失重性质相差不大,凹凸土热失重曲线有4个突变,温度达到780℃时,失重达17%左右。