Catalysts can accelerate the chemical reaction rate and effectively promote the molecules transformation,which is of great significance in the research of chemical industry and material science.The extreme utilization...Catalysts can accelerate the chemical reaction rate and effectively promote the molecules transformation,which is of great significance in the research of chemical industry and material science.The extreme utilization of reactive sites has led to the emergence and development of atomically dispersed materials(ADMs).The highly active coordination unsaturated metal sites and fully utilized metal atoms make ADMs show great potential in catalytic reactions.The adjustment of coordination environment and electronic structure provides more possibilities for constructing reactive centers with different properties.This review summarized the application and research progress of ADMs in different fields.The design strategy and structure–activity relationship of ADMs for specific reactions were summarized and analyzed.Moreover,we also provided advices for the challenges and opportunities faced by ADMs in catalytic reactions.展开更多
The appropriate catalysts can accelerate the reaction rate and effectively boost the efficient conversion of various molecules,which is of great importance in the study of chemistry,chemical industry,energy,materials ...The appropriate catalysts can accelerate the reaction rate and effectively boost the efficient conversion of various molecules,which is of great importance in the study of chemistry,chemical industry,energy,materials and environmental science.Therefore,efficient,environmentally friendly,and easy to operate synthesis methods have been used to prepare various types of catalysts.Although previous studies have reported the synthesis and characterization of the aforementioned catalysts,more still remain in trial and error methods,without in-depth consideration and improvement of traditional synthesis methods.Here,we comprehensively summarize and compare the preparation methods of the trial-and-error synthesis strategy,structure–activity relationships and density functional theory(DFT)guided catalysts rational design for nanomaterials and atomically dispersed catalysts.We also discuss in detail the utilization of the nanomaterials and single atom catalysts for converting small molecules(H_(2)O,O_(2),CO_(2),N_(2),etc.)into value-added products driven by electrocatalysis,photocatalysis,and thermocatalysis.Finally,the challenges and outlooks of mass preparation and production of efficient and green catalysts through conventional trial and error synthesis and DFT theory are featured in accordance with its current development.展开更多
Up to now, the evaporation and condensation, as well as the biological absorption and inorganic absorptions, have been proved to be major factors in Cd isotope fractionation. And Cd isotopes have been widely applied i...Up to now, the evaporation and condensation, as well as the biological absorption and inorganic absorptions, have been proved to be major factors in Cd isotope fractionation. And Cd isotopes have been widely applied in studies on the universal evolution and marine environment and so on. However, only a few researches have been conducted in applying Cd isotopes to trace the source of metallogenic material and the evolution of the ore-forming fluid in a complex mineralization environment, especially in a hydrothermal ore-formation system. We measured the Cd isotopic compositions of sphalerite, galena, and ores from five lead-zinc deposits in SW China, and found that the ~14/11~Cd values varied from -1.53%o to 0.34%0, with a total range of 1.87%o, which is greater than most of measured geological samples. Meanwhile, through contrasting the Cd content with Cd isotopic compositions of different deposits, it may be concluded that different genetic lead-zinc deposits have different Cd content and isotopic compositions, which could be a tool for the studies on the origin of ore deposits. Also, the biominera]iza- tion and crystal fractionation may also result in Cd isotope fractionation. In a word, although the research of Cd isotopes is presently at the preliminary stage (especially in hydrothermal ore-formation system), this study demonstrated that Cd isotopes can give a clue in tracing the evolution of ore-forming fluid and metallogenic environment.展开更多
Three-dimensional(3D)porous scaffolds have a demonstrated value for tissue engineering and regenerative medicine.Inspired by the predation processes of marine predators in nature,we present new photocontrolled shrinka...Three-dimensional(3D)porous scaffolds have a demonstrated value for tissue engineering and regenerative medicine.Inspired by the predation processes of marine predators in nature,we present new photocontrolled shrinkable inverse opal graphene oxide(GO)hydrogel scaffolds for cell enrichment and 3D culture.The scaffolds with adjustable pore sizes and morphologies were created using a GO and N-isopropylacrylamide dispersed solution as a continuous phase of microfluidic emulsions for polymerizing and replicating.Because of the interconnected porous structures and the remotely controllable volume responsiveness of the scaffolds,the suspended cells could be enriched into the inner spaces of the scaffolds through predator-like swallowing and discharging processes.Hepatocyte cells concentrated in the scaffold pores could form denser 3D spheroids more quickly via the controlled compression force caused by the shrinking of the dynamic scaffolds.More importantly,with a program of scaffold enrichment with different cells,an unprecedented 3D multilayer coculture system of endothelial-cellencapsulated hepatocytes and fibroblasts could be generated for applications such as liver-on-a-chip and bioartificial liver.It was demonstrated that the resultant multicellular system offered significant improvements in hepatic functions,such as albumin secretion,urea synthesis,and cytochrome P450 expression.These features of our scaffolds make them highly promising for the biomimetic construction of various physiological and pathophysiological 3D tissue models,which could be used for understanding tissue level biology and in vitro drug testing applications.展开更多
An atomically dispersed FeCo-NC material with the 3D flower-like morphology was used as a unique substrate for the controllable deposition of ultrasmall NiFe layered double hydroxide nanodots(termed as NiFe-NDs)to sim...An atomically dispersed FeCo-NC material with the 3D flower-like morphology was used as a unique substrate for the controllable deposition of ultrasmall NiFe layered double hydroxide nanodots(termed as NiFe-NDs)to simultaneously promote the sluggish kinetics of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The size-limiting growth of NiFe-NDs(~4.0 nm in diameter)was realized via the confinement of the 3D flower-like mesoporous structure and the rich N/O functionality of FeCo-NC.Benefiting from the distinctive structure with the simultaneously maximum exposure of both OER and ORR active sites,the NiFe-ND/FeCo-NC composite showed an ORR halfwave potential of 0.85 V and an OER potential of 1.66 V in0.1 mol L-1KOH at 10.0 mA cm-2.In-situ Raman analysis suggested the activity of OER was derived from the Ni sites on NiFe-ND/FeCo-NC.Moreover,the NiFe-ND/FeCo-NC-assembled Zn-air battery(ZAB)exhibited a very small discharge-charge voltage gap of 0.87 V at 20 mA cm-2and robust cycling stability.Furthermore,the NiFe-ND/FeCo-NC composite was also applicable for fabricating all-solid-state ZAB to power wearable electronics with superior cycling stability under deformation.Our work could enlighten a new applicable branch of atomically dispersed metal-nitrogen-carbon materials as unique substrates for fabricating multifunctional electrocatalysts.展开更多
W-(0.2,0.5,1.0)wt%ZrC alloys with a relative density above 97.5%were fabricated through the spark plasma sintering(SPS) method.The grain size of W-1.0wt%ZrC is about2.7 μm,smaller than that of pure W and W-(0.2,...W-(0.2,0.5,1.0)wt%ZrC alloys with a relative density above 97.5%were fabricated through the spark plasma sintering(SPS) method.The grain size of W-1.0wt%ZrC is about2.7 μm,smaller than that of pure W and W-(0.2,0.5)wt%ZrC.The results indicated that the W-ZrC alloys exhibit higher hardness at room temperature,higher tensile strength at high temperature,and a lower ductile to brittle transition temperature(DBTT) than pure W.The tensile strength and total elongation of W-0.5wt%ZrC alloy at 700 ℃ is 535 MPa and 24.8%,which are respectively 59%and 114%higher than those of pure W(337 MPa,11.6%).The DBTT of W-(0.2,0.5,1.0)wt%ZrC materials is in the range of 500 ℃-600 ℃,which is about 100 ℃ lower than that of pure W.Based on microstructure analysis,the improved mechanical properties of the W-ZrC alloys were suggested to originate from the enhanced grain boundary cohesion by ZrC capturing the impurity oxygen in tungsten and nano-size ZrC dispersion strengthening.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
Carbon materials featuring hierarchical pores and atomically dispersed metal sites are promising catalysts for energy storage and conversion applications.Herein,we developed a facile strategy to construct functional c...Carbon materials featuring hierarchical pores and atomically dispersed metal sites are promising catalysts for energy storage and conversion applications.Herein,we developed a facile strategy to construct functional carbon materials with a fluffy peony-like structure and dense binary FeCo-Nx active sites(termed as f-FeCo-CNT).By regulating the metal content in precursors,a three-dimensional(3D)interconnected conductive carbon nanotubes network was in-situ formed throughout the atomically dispersed FeCo-NC matrix during pyrolysis.Taking advantage of rich pore hierarchy and co-existence of highly active FeCo-Nx sites and beneficial FeCo alloy nanoparticles,the f-FeCo-CNT material exhibited excellent bifunctional performance towards oxygen reduction reaction/oxygen evolution reactions(ORR/OER)with respect to the atomically dispersed FeCo-NC(SA-f-FeCo-NC)and commercial Pt/C+Ru02 mixture,surpassing the SA-f-FeCo-NC with a 20 mV higher ORR half-wave potential and a 100 mV lower OER overpotential(at 10.0 mA/cm^2).Remarkably,the f-FeCo-CNT-assembled Zn-air battery(ZAB)possessed a maximum specific power of 195.8 mW/cm^2,excellent rate capability,and very good cycling stability at large current density of 20.0 mA/cm^2.This work provides a facile and feasible synthetic strategy of constructing low-cost cathode materials with excellent comprehensive ZAB performance.展开更多
Photoabsorption charge separation/transfer and surface reaction are the three main factors influencing the efficiency of photocatalysis.Band structure engineering has been extensively applied to improve the light abso...Photoabsorption charge separation/transfer and surface reaction are the three main factors influencing the efficiency of photocatalysis.Band structure engineering has been extensively applied to improve the light absorption of photocatalysts,however,most of the developed photocatalysts still suffer from low photocatalytic performance due to the limited active site(s)and fast recombination of photogenerated charge carriers.In this work,atomically dispersed main group magnesium(Mg)is introduced onto CdS monodispersed nanospheres,which greatly enhances the photocatalytic hydrogen evolution reaction.The photocatalytic hydrogen evolution reaction rate reaches 30.6 mmol·gcatalyst^(-1)·h^(-1),which is about 11.8 and 2.5 times that of pure CdS and Pt(2 wt.%)-CdS.The atomically dispersed Mg on CdS acts as an electron sink to trap photogenerated electrons,and at the same time,greatly reduces the Gibbs free energy of hydrogen evolution reaction(HER)and accelerates HER.展开更多
基金supported by the National Key R&D Program of China(No.2018YFA0702003)the National Natural Science Foundation of China(Nos.21890383 and 21871159)+1 种基金the Science and Technology Key Project of Guangdong Province of China(No.2020B010188002)the China Postdoctoral Science Foundation(No.2022M721796).
文摘Catalysts can accelerate the chemical reaction rate and effectively promote the molecules transformation,which is of great significance in the research of chemical industry and material science.The extreme utilization of reactive sites has led to the emergence and development of atomically dispersed materials(ADMs).The highly active coordination unsaturated metal sites and fully utilized metal atoms make ADMs show great potential in catalytic reactions.The adjustment of coordination environment and electronic structure provides more possibilities for constructing reactive centers with different properties.This review summarized the application and research progress of ADMs in different fields.The design strategy and structure–activity relationship of ADMs for specific reactions were summarized and analyzed.Moreover,we also provided advices for the challenges and opportunities faced by ADMs in catalytic reactions.
基金supported by the National Key R&D Program of China(No.2018YFA0702003)the National Natural Science Foundation of China(Nos.21890383 and 22171157)+1 种基金L.G.W.acknowledges the funding support from the Project funded by China Postdoctoral Science Foundation(No.2022M711787)the Shuimu Tsinghua Scholar program(No.2021SM071)of Tsinghua University,China.
文摘The appropriate catalysts can accelerate the reaction rate and effectively boost the efficient conversion of various molecules,which is of great importance in the study of chemistry,chemical industry,energy,materials and environmental science.Therefore,efficient,environmentally friendly,and easy to operate synthesis methods have been used to prepare various types of catalysts.Although previous studies have reported the synthesis and characterization of the aforementioned catalysts,more still remain in trial and error methods,without in-depth consideration and improvement of traditional synthesis methods.Here,we comprehensively summarize and compare the preparation methods of the trial-and-error synthesis strategy,structure–activity relationships and density functional theory(DFT)guided catalysts rational design for nanomaterials and atomically dispersed catalysts.We also discuss in detail the utilization of the nanomaterials and single atom catalysts for converting small molecules(H_(2)O,O_(2),CO_(2),N_(2),etc.)into value-added products driven by electrocatalysis,photocatalysis,and thermocatalysis.Finally,the challenges and outlooks of mass preparation and production of efficient and green catalysts through conventional trial and error synthesis and DFT theory are featured in accordance with its current development.
基金supported by National Basic Research Program of China(Grant No.2009CB421005)Chinese Academy of Sciences for Key Topics in Innovation Engineering(Grant No.KZCX2-YW-Q04-01)
文摘Up to now, the evaporation and condensation, as well as the biological absorption and inorganic absorptions, have been proved to be major factors in Cd isotope fractionation. And Cd isotopes have been widely applied in studies on the universal evolution and marine environment and so on. However, only a few researches have been conducted in applying Cd isotopes to trace the source of metallogenic material and the evolution of the ore-forming fluid in a complex mineralization environment, especially in a hydrothermal ore-formation system. We measured the Cd isotopic compositions of sphalerite, galena, and ores from five lead-zinc deposits in SW China, and found that the ~14/11~Cd values varied from -1.53%o to 0.34%0, with a total range of 1.87%o, which is greater than most of measured geological samples. Meanwhile, through contrasting the Cd content with Cd isotopic compositions of different deposits, it may be concluded that different genetic lead-zinc deposits have different Cd content and isotopic compositions, which could be a tool for the studies on the origin of ore deposits. Also, the biominera]iza- tion and crystal fractionation may also result in Cd isotope fractionation. In a word, although the research of Cd isotopes is presently at the preliminary stage (especially in hydrothermal ore-formation system), this study demonstrated that Cd isotopes can give a clue in tracing the evolution of ore-forming fluid and metallogenic environment.
基金This work was supported by the National Key Research and Development Program of China(2017YFA0700404)the National Natural Science Foundation of China(grant nos.21473029 and 51522302)+4 种基金the NSAF Foundation of China(grant no.U1530260)the National Science Foundation of Jiangsu Province(grant no.BK20180128)the Scientific Research Foundation of Southeast University,the Scientific Research Foundation of the Graduate School of Southeast University,the Fundamental Research Funds for the Central Universities(2242018R20012)the China Postdoctoral Science Foundation funded project(2018M640445)Changmin Shao also thanks the Postdoctoral Science Foundation of Jiangsu Province.
文摘Three-dimensional(3D)porous scaffolds have a demonstrated value for tissue engineering and regenerative medicine.Inspired by the predation processes of marine predators in nature,we present new photocontrolled shrinkable inverse opal graphene oxide(GO)hydrogel scaffolds for cell enrichment and 3D culture.The scaffolds with adjustable pore sizes and morphologies were created using a GO and N-isopropylacrylamide dispersed solution as a continuous phase of microfluidic emulsions for polymerizing and replicating.Because of the interconnected porous structures and the remotely controllable volume responsiveness of the scaffolds,the suspended cells could be enriched into the inner spaces of the scaffolds through predator-like swallowing and discharging processes.Hepatocyte cells concentrated in the scaffold pores could form denser 3D spheroids more quickly via the controlled compression force caused by the shrinking of the dynamic scaffolds.More importantly,with a program of scaffold enrichment with different cells,an unprecedented 3D multilayer coculture system of endothelial-cellencapsulated hepatocytes and fibroblasts could be generated for applications such as liver-on-a-chip and bioartificial liver.It was demonstrated that the resultant multicellular system offered significant improvements in hepatic functions,such as albumin secretion,urea synthesis,and cytochrome P450 expression.These features of our scaffolds make them highly promising for the biomimetic construction of various physiological and pathophysiological 3D tissue models,which could be used for understanding tissue level biology and in vitro drug testing applications.
基金financially supported by the National Natural Science Foundation of China(21701101)the National Key Research and Development Project,Key Projects of Intergovernmental International Innovation Cooperation(2018YFE0118200 and 2016YFF0204402)+4 种基金the Fundamental Research Funds for the Central Universities(18CX06063A)the Key Research and Development Project of Shandong Province(2019JZZY010506)the Scientific Research Awards Foundation for Outstanding Young Scientists of Shandong Province(ZR2018JL010)the Joint Fund of Outstanding Young Talents of Shandong Province(ZR2017BB018)the Program of Qingdao Scientific and Technological Innovation High-level Talents Project(172-1-1-zhc)。
文摘An atomically dispersed FeCo-NC material with the 3D flower-like morphology was used as a unique substrate for the controllable deposition of ultrasmall NiFe layered double hydroxide nanodots(termed as NiFe-NDs)to simultaneously promote the sluggish kinetics of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The size-limiting growth of NiFe-NDs(~4.0 nm in diameter)was realized via the confinement of the 3D flower-like mesoporous structure and the rich N/O functionality of FeCo-NC.Benefiting from the distinctive structure with the simultaneously maximum exposure of both OER and ORR active sites,the NiFe-ND/FeCo-NC composite showed an ORR halfwave potential of 0.85 V and an OER potential of 1.66 V in0.1 mol L-1KOH at 10.0 mA cm-2.In-situ Raman analysis suggested the activity of OER was derived from the Ni sites on NiFe-ND/FeCo-NC.Moreover,the NiFe-ND/FeCo-NC-assembled Zn-air battery(ZAB)exhibited a very small discharge-charge voltage gap of 0.87 V at 20 mA cm-2and robust cycling stability.Furthermore,the NiFe-ND/FeCo-NC composite was also applicable for fabricating all-solid-state ZAB to power wearable electronics with superior cycling stability under deformation.Our work could enlighten a new applicable branch of atomically dispersed metal-nitrogen-carbon materials as unique substrates for fabricating multifunctional electrocatalysts.
基金supported by the Innovation Program of Chinese Academy of Sciences(No.KJCX2-YW-N35)the National Magnetic Confinement Fusion Science Program of China(No.2011GB108004)+1 种基金National Natural Science Foundation of China(Nos.51301164,11075177,11274305)Anhui Provincial Natural Science Foundation of China(No.1408085QE77)
文摘W-(0.2,0.5,1.0)wt%ZrC alloys with a relative density above 97.5%were fabricated through the spark plasma sintering(SPS) method.The grain size of W-1.0wt%ZrC is about2.7 μm,smaller than that of pure W and W-(0.2,0.5)wt%ZrC.The results indicated that the W-ZrC alloys exhibit higher hardness at room temperature,higher tensile strength at high temperature,and a lower ductile to brittle transition temperature(DBTT) than pure W.The tensile strength and total elongation of W-0.5wt%ZrC alloy at 700 ℃ is 535 MPa and 24.8%,which are respectively 59%and 114%higher than those of pure W(337 MPa,11.6%).The DBTT of W-(0.2,0.5,1.0)wt%ZrC materials is in the range of 500 ℃-600 ℃,which is about 100 ℃ lower than that of pure W.Based on microstructure analysis,the improved mechanical properties of the W-ZrC alloys were suggested to originate from the enhanced grain boundary cohesion by ZrC capturing the impurity oxygen in tungsten and nano-size ZrC dispersion strengthening.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
基金This work was financially supported by the National Natural Science Foundation of China(No.21701101)the National Key Research and Development Project(Nos.2018YFE0118200,2016YFF0204402)+5 种基金the Fundamental Research Funds for the Central Universities(No.18CX06063A)the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of China,the Shandong Key Research and Development Project(No.2019JZZY010506)the Shandong Scientific Research Awards Foundation for Outstanding Young Scientists(No.ZR2018JL010)the Shandong Joint Fund of Outstanding Young Talents(No.ZR2017BB018)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(No.2017RCJJ059)the Program for Tsingtao Al-ion Power and Energy-Storage Battery Research Team in the University(No.17-2-1-1-zhc).
文摘Carbon materials featuring hierarchical pores and atomically dispersed metal sites are promising catalysts for energy storage and conversion applications.Herein,we developed a facile strategy to construct functional carbon materials with a fluffy peony-like structure and dense binary FeCo-Nx active sites(termed as f-FeCo-CNT).By regulating the metal content in precursors,a three-dimensional(3D)interconnected conductive carbon nanotubes network was in-situ formed throughout the atomically dispersed FeCo-NC matrix during pyrolysis.Taking advantage of rich pore hierarchy and co-existence of highly active FeCo-Nx sites and beneficial FeCo alloy nanoparticles,the f-FeCo-CNT material exhibited excellent bifunctional performance towards oxygen reduction reaction/oxygen evolution reactions(ORR/OER)with respect to the atomically dispersed FeCo-NC(SA-f-FeCo-NC)and commercial Pt/C+Ru02 mixture,surpassing the SA-f-FeCo-NC with a 20 mV higher ORR half-wave potential and a 100 mV lower OER overpotential(at 10.0 mA/cm^2).Remarkably,the f-FeCo-CNT-assembled Zn-air battery(ZAB)possessed a maximum specific power of 195.8 mW/cm^2,excellent rate capability,and very good cycling stability at large current density of 20.0 mA/cm^2.This work provides a facile and feasible synthetic strategy of constructing low-cost cathode materials with excellent comprehensive ZAB performance.
基金We are grateful for the financial support from the Natural Science Foundation of China(51979081)Fundamental Research Funds for the Central Universities(No.B200202103)+2 种基金Ministry of Education of Singapore(Tier 1:RG4/20 and Tier 2:MOET2EP10120-0002)Agency for Science,Technology and Research(AME IRG:A20E5c0080)PAPD。
文摘Photoabsorption charge separation/transfer and surface reaction are the three main factors influencing the efficiency of photocatalysis.Band structure engineering has been extensively applied to improve the light absorption of photocatalysts,however,most of the developed photocatalysts still suffer from low photocatalytic performance due to the limited active site(s)and fast recombination of photogenerated charge carriers.In this work,atomically dispersed main group magnesium(Mg)is introduced onto CdS monodispersed nanospheres,which greatly enhances the photocatalytic hydrogen evolution reaction.The photocatalytic hydrogen evolution reaction rate reaches 30.6 mmol·gcatalyst^(-1)·h^(-1),which is about 11.8 and 2.5 times that of pure CdS and Pt(2 wt.%)-CdS.The atomically dispersed Mg on CdS acts as an electron sink to trap photogenerated electrons,and at the same time,greatly reduces the Gibbs free energy of hydrogen evolution reaction(HER)and accelerates HER.