基于深度学习的解耦表示学习可以通过数据生成的方式解耦数据内部多维度、多层次的潜在生成因素,并解释其内在规律,提高模型对数据的自主探索能力。传统基于结构化先验的解耦模型只能实现各个层次之间的解耦,不能实现层次内部的解耦,如...基于深度学习的解耦表示学习可以通过数据生成的方式解耦数据内部多维度、多层次的潜在生成因素,并解释其内在规律,提高模型对数据的自主探索能力。传统基于结构化先验的解耦模型只能实现各个层次之间的解耦,不能实现层次内部的解耦,如变分层次自编码(variational ladder auto-encoders,VLAE)模型。本文提出全相关约束下的变分层次自编码(variational ladder auto-encoder based on total correlation,TC-VLAE)模型,该模型以变分层次自编码模型为基础,对多层次模型结构中的每一层都加入非结构化先验的全相关项作为正则化项,促进此层内部隐空间中各维度之间的相互独立,使模型实现层次内部的解耦,提高整个模型的解耦表示学习能力。在模型训练时采用渐进式训练方式优化模型训练,充分发挥多层次模型结构的优势。本文最后在常用解耦数据集3Dshapes数据集、3Dchairs数据集、Celeb A人脸数据集和dSprites数据集上设计对比实验,验证了TC-VLAE模型在解耦表示学习方面有明显的优势。展开更多
为解决在识别过程中存在手背静脉图像信息严重缺失而造成识别效率低下的问题,提出基于分离表示学习严重缺失手背静脉图像的修复算法.基于图像到图像转换的互信息估计表示学习的原理,通过一个共享属性部分编码网络和一个独占属性部分的...为解决在识别过程中存在手背静脉图像信息严重缺失而造成识别效率低下的问题,提出基于分离表示学习严重缺失手背静脉图像的修复算法.基于图像到图像转换的互信息估计表示学习的原理,通过一个共享属性部分编码网络和一个独占属性部分的编码网络来进行特征信息的分离表示,学习静脉关键点与完整静脉骨架图像之间的映射,进而实现基于部分关键点对静脉严重缺失图像的良好修复.为保证生成图像的质量,采用对抗损失与感知损失保证图像的语义真实性与信息完整性,采用循环一致性损失对分离表示网络得到的分离内容和属性表示的循环重建进行约束.实验结果表明,生成图像在视觉效果、峰值信噪比(Peak Signal to Noise Ratio,PSNR)、结构相似性(Structural Similarity Index,SSIM)等方面的表现优于经典算法,有效地实现了对严重缺失静脉图像的良好修复.展开更多
文摘基于深度学习的解耦表示学习可以通过数据生成的方式解耦数据内部多维度、多层次的潜在生成因素,并解释其内在规律,提高模型对数据的自主探索能力。传统基于结构化先验的解耦模型只能实现各个层次之间的解耦,不能实现层次内部的解耦,如变分层次自编码(variational ladder auto-encoders,VLAE)模型。本文提出全相关约束下的变分层次自编码(variational ladder auto-encoder based on total correlation,TC-VLAE)模型,该模型以变分层次自编码模型为基础,对多层次模型结构中的每一层都加入非结构化先验的全相关项作为正则化项,促进此层内部隐空间中各维度之间的相互独立,使模型实现层次内部的解耦,提高整个模型的解耦表示学习能力。在模型训练时采用渐进式训练方式优化模型训练,充分发挥多层次模型结构的优势。本文最后在常用解耦数据集3Dshapes数据集、3Dchairs数据集、Celeb A人脸数据集和dSprites数据集上设计对比实验,验证了TC-VLAE模型在解耦表示学习方面有明显的优势。
文摘为解决在识别过程中存在手背静脉图像信息严重缺失而造成识别效率低下的问题,提出基于分离表示学习严重缺失手背静脉图像的修复算法.基于图像到图像转换的互信息估计表示学习的原理,通过一个共享属性部分编码网络和一个独占属性部分的编码网络来进行特征信息的分离表示,学习静脉关键点与完整静脉骨架图像之间的映射,进而实现基于部分关键点对静脉严重缺失图像的良好修复.为保证生成图像的质量,采用对抗损失与感知损失保证图像的语义真实性与信息完整性,采用循环一致性损失对分离表示网络得到的分离内容和属性表示的循环重建进行约束.实验结果表明,生成图像在视觉效果、峰值信噪比(Peak Signal to Noise Ratio,PSNR)、结构相似性(Structural Similarity Index,SSIM)等方面的表现优于经典算法,有效地实现了对严重缺失静脉图像的良好修复.