期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
连续属性离散化的Imp-Chi2算法 被引量:2
1
作者 桑雨 闫德勤 +1 位作者 刘磊 梁宏霞 《计算机工程》 CAS CSCD 北大核心 2008年第17期39-41,共3页
连续属性离散化是机器学习和数据挖掘领域中的一个重要问题,离散化是否合理决定着表达和提取相关信息的准确性。经过研究Chi2系列算法,提出一种新的基于属性重要性的连续属性离散化方法——Imp-Chi2算法,该算法依据属性重要性程度对属... 连续属性离散化是机器学习和数据挖掘领域中的一个重要问题,离散化是否合理决定着表达和提取相关信息的准确性。经过研究Chi2系列算法,提出一种新的基于属性重要性的连续属性离散化方法——Imp-Chi2算法,该算法依据属性重要性程度对属性离散化的顺序进行了合理的调整,能够更准确地对连续属性进行离散化。文章通过C4.5和支持向量机分别对离散化后的结果进行了实验,在实验过程中,提出一种训练集类比例抽取方法,避免了训练集随机抽取的不均匀性。实验结果证明了所提算法的有效性。 展开更多
关键词 连续属性离散化 CHI2算法 属性重要性 训练集类比例抽取
下载PDF
连续属性离散化的Integral Chi2算法 被引量:2
2
作者 闫德勤 张丽平 《小型微型计算机系统》 CSCD 北大核心 2008年第4期691-693,共3页
连续属性离散化在机器学习和数据挖掘领域中有着重要的作用.连续属性离散化方法是否合理决定着对信息的表达和提取的准确性.Chi2算法基于统计学理论方法,对连续属性离散化研究产生着重要影响.在对Chi2及相关算法中统计量χ2应用意义讨... 连续属性离散化在机器学习和数据挖掘领域中有着重要的作用.连续属性离散化方法是否合理决定着对信息的表达和提取的准确性.Chi2算法基于统计学理论方法,对连续属性离散化研究产生着重要影响.在对Chi2及相关算法中统计量χ2应用意义讨论的基础上,提出了一种新的(IntegralChi2)算法,该算法基于概率统计理论把统计量χ2与分位点χ2α间对应的积分(概率)作为区间合并的依据,能够更合理更准确地对连续属性进行离散化.实验结果证明了算法的有效性. 展开更多
关键词 连续属性离散化 CHI2算法 数据挖掘
下载PDF
一种新的Chi2算法在乳腺肿瘤诊断中的应用
3
作者 毕雪华 姚雪梅 +1 位作者 孙静 张琳琳 《医疗卫生装备》 CAS 2013年第7期15-17,共3页
目的:结合面向医学领域的数据挖掘技术,对乳腺肿瘤诊断方法进行优化。方法:提出连续特征离散化的New-Chi2算法,通过均匀选取类样本的支持向量机(T-SVM)分类方法,对乳腺肿瘤的数据信息进行数据离散化预处理。结果:在乳腺肿瘤诊断中采用... 目的:结合面向医学领域的数据挖掘技术,对乳腺肿瘤诊断方法进行优化。方法:提出连续特征离散化的New-Chi2算法,通过均匀选取类样本的支持向量机(T-SVM)分类方法,对乳腺肿瘤的数据信息进行数据离散化预处理。结果:在乳腺肿瘤诊断中采用该方法,分类预测率达到99.27%,取得了高于传统支持向量机分类器的分类学习精度。结论:采用的方法简化了信息系统,利用T-SVM对预处理后的数据进行分类和测试,可以更准确地识别出肿瘤是良性还是恶性。 展开更多
关键词 数据挖掘 连续属性离散化 支持向量机 乳腺肿瘤诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部