A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discr...A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discrete Hamiltonian systems. A new integrable symplectic map is given by binary Bargmann constraint of the resulting hierarchy. Finally, an infinite set of conservation laws is given for the resulting hierarchy.展开更多
Chaotic behavior can be observed in continuous and discrete-time systems.This behavior can appear in one-dimensional nonlinear maps;however,having at least three state variables in flows is necessary.Due to the lower ...Chaotic behavior can be observed in continuous and discrete-time systems.This behavior can appear in one-dimensional nonlinear maps;however,having at least three state variables in flows is necessary.Due to the lower mathematical complexity and computational cost of maps,lots of research has been conducted based on them.This paper aims to present a novel one-dimensional trigonometric chaotic map that is multi-stable and can act attractively.The proposed chaotic map is first analyzed using a single sinusoidal function;then,its abilities are expanded to a map with a combination of two sinusoidal functions.The stability conditions of both maps are investigated,and their different behaviors are validated through time series,state space,and cobweb diagrams.Eventually,the influence of parameter variations on the maps’outputs is examined by one-dimensional and two-dimensional bifurcation diagrams and Lyapunov exponent spectra.Besides,the diversity of outputs with varying initial conditions reveals this map’s multi-stability.The newly designed chaotic map can be employed in encryption applications.展开更多
In order to predict bifurcation point of the closed-loop current-programmed boost converter and enable this converter to operate at stable parameter space, this paper firstly establishes stroboscopic maps for this con...In order to predict bifurcation point of the closed-loop current-programmed boost converter and enable this converter to operate at stable parameter space, this paper firstly establishes stroboscopic maps for this converter in the continuous conduction mode according to operating characteristics and topple of this converter. Parameter space at the steady state and bifurcation types are analysed together with stability theory of nonlinear equation. In the solving course, the duty cycle is avoided because of inversive solution, and accuracy is increased. Finally, correction is proved by numerical calculation.展开更多
This paper introduces an efficient image cryptography system.The pro-posed image cryptography system is based on employing the two-dimensional(2D)chaotic henon map(CHM)in the Discrete Fourier Transform(DFT).The propos...This paper introduces an efficient image cryptography system.The pro-posed image cryptography system is based on employing the two-dimensional(2D)chaotic henon map(CHM)in the Discrete Fourier Transform(DFT).The proposed DFT-based CHM image cryptography has two procedures which are the encryption and decryption procedures.In the proposed DFT-based CHM image cryptography,the confusion is employed using the CHM while the diffu-sion is realized using the DFT.So,the proposed DFT-based CHM image crypto-graphy achieves both confusion and diffusion characteristics.The encryption procedure starts by applying the DFT on the image then the DFT transformed image is scrambled using the CHM and the inverse DFT is applied to get the final-ly encrypted image.The decryption procedure follows the inverse procedure of encryption.The proposed DFT-based CHM image cryptography system is exam-ined using a set of security tests like statistical tests,entropy tests,differential tests,and sensitivity tests.The obtained results confirm and ensure the superiority of the proposed DFT-based CHM image cryptography system.These outcomes encourage the employment of the proposed DFT-based CHM image cryptography system in real-time image and video applications.展开更多
基于Web of science数据库,以2010~2021年检索的851篇边坡离散元期刊论文为样本,利用Citespace对该领域内论文发表数量、国家/地区和机构、作者和期刊以及高中心性关键词进行文献计量和可视化分析。结果表明:目前中国处于边坡离散元研...基于Web of science数据库,以2010~2021年检索的851篇边坡离散元期刊论文为样本,利用Citespace对该领域内论文发表数量、国家/地区和机构、作者和期刊以及高中心性关键词进行文献计量和可视化分析。结果表明:目前中国处于边坡离散元研究领先地位,国际合作较少,核心发文机构为中国科学院和中国地质大学;GEOTECHNIQUE和ENG GEOL杂志为边坡离散元研究的代表性期刊,涉及学科主要为工程技术和地学;自2010~2021年离散元在边坡方向研究的总体发展脉络清晰,前期以完善基础知识为主,后期则着重于结合工程实际。研究结果有助于理清边坡离散元的整体研究脉络,对研究现状和热点提供分析。展开更多
Fractal structures in a generalized squared map with exponential terms are expanded in this paper. We describe how complex behaviors can arise as the parameters change. The appearances of different kinds of fractal st...Fractal structures in a generalized squared map with exponential terms are expanded in this paper. We describe how complex behaviors can arise as the parameters change. The appearances of different kinds of fractal structures, in both the attractive and the divergent regions, and most interestingly, on small regular islands embedded in the chaotic region, are manifested to have a variety of extraordinary geometries in the parameter plane.展开更多
Underwater imagery and transmission possess numerous challenges like lower signal bandwidth,slower data transmission bit rates,Noise,underwater blue/green light haze etc.These factors distort the estimation of Region ...Underwater imagery and transmission possess numerous challenges like lower signal bandwidth,slower data transmission bit rates,Noise,underwater blue/green light haze etc.These factors distort the estimation of Region of Interest and are prime hurdles in deploying efficient compression techniques.Due to the presence of blue/green light in underwater imagery,shape adaptive or block-wise compression techniques faces failures as it becomes very difficult to estimate the compression levels/coefficients for a particular region.This method is proposed to efficiently deploy an Extreme Learning Machine(ELM)model-based shape adaptive Discrete Cosine Transformation(DCT)for underwater images.Underwater color image restoration techniques based on veiling light estimation and restoration of images followed by Saliency map estimation based on Gray Level Cooccurrence Matrix(GLCM)features are explained.An ELM network is modeled which takes two parameters,signal strength and saliency value of the region to be compressed and level of compression(DCT coefficients and compression steps)are predicted by ELM.This method ensures lesser errors in the Region of Interest and a better trade-off between available signal strength and compression level.展开更多
Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodol...Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodology by conjugating both temporal pre-processing and spatial clustering approaches in a way to take advantage of multiscale properties of precipitation time series. Annual precipitation data of 51 years(1960-2010) for 31 rain gauges(RGs) were collected and used in proposed clustering approaches. Discreet wavelet transform(DWT) was used to capture the time-frequency attributes of the time series and multiscale regionalization was performed by using k-means and Self Organizing Maps(SOM) clustering techniques. Daubechies function(db) was selected as mother wavelet to decompose the precipitation time series. Also, proper boundary extensions and decomposition level were applied. Different combinations of the approximation(A) and detail(D) coefficients were used to determine the input dataset as a basis of spatial clustering. The proposed model's efficiency in spatial clustering stage was verified using three different indexes namely, Silhouette Coefficient(SC), Dunn index and Davis Bouldin index(DB). Results approved superior performance of k-means technique in comparison to SOM. It was also deduced that DWT-based regionalization methodology showed improvements in comparison to historical-based models. Cross mutual information was used to investigate the RGs of cluster 3's homogeneousness in DWT-k-means approach. Results of non-linear correlation approach verified homogeneity of cluster 3. Verifications based on mean annual precipitation values of rain gauges in each cluster also approved the capability of multiscale approach in precipitation regionalization.展开更多
Patient privacy and data protection have been crucial concerns in Ehealthcare systems for many years.In modern-day applications,patient data usually holds clinical imagery,records,and other medical details.Lately,the ...Patient privacy and data protection have been crucial concerns in Ehealthcare systems for many years.In modern-day applications,patient data usually holds clinical imagery,records,and other medical details.Lately,the Internet of Medical Things(IoMT),equipped with cloud computing,has come out to be a beneficial paradigm in the healthcare field.However,the openness of networks and systems leads to security threats and illegal access.Therefore,reliable,fast,and robust security methods need to be developed to ensure the safe exchange of healthcare data generated from various image sensing and other IoMT-driven devices in the IoMT network.This paper presents an image protection scheme for healthcare applications to protect patients’medical image data exchanged in IoMT networks.The proposed security scheme depends on an enhanced 2D discrete chaotic map and allows dynamic substitution based on an optimized highly-nonlinear S-box and diffusion to gain an excellent security performance.The optimized S-box has an excellent nonlinearity score of 112.The new image protection scheme is efficient enough to exhibit correlation values less than 0.0022,entropy values higher than 7.999,and NPCR values around 99.6%.To reveal the efficacy of the scheme,several comparison studies are presented.These comparison studies reveal that the novel protection scheme is robust,efficient,and capable of securing healthcare imagery in IoMT systems.展开更多
This paper proposes an associative memory model based on a coupled system of Gaussian maps. A one-dimensional Gaussian map describes a discrete-time dynamical system, and the coupled system of Gaussian maps can genera...This paper proposes an associative memory model based on a coupled system of Gaussian maps. A one-dimensional Gaussian map describes a discrete-time dynamical system, and the coupled system of Gaussian maps can generate various phenomena including asymmetric fixed and periodic points. The Gaussian associative memory can effectively recall one of the stored patterns, which were triggered by an input pattern by associating the asymmetric two-periodic points observed in the coupled system with the binary values of output patterns. To investigate the Gaussian associative memory model, we formed its reduced model and analyzed the bifurcation structure. Pseudo-patterns were observed for the proposed model along with other conventional associative memory models, and the obtained patterns were related to the high-order or quasi-periodic points and the chaotic trajectories. In this paper, the structure of the Gaussian associative memory and its reduced models are introduced as well as the results of the bifurcation analysis are presented. Furthermore, the output sequences obtained from simulation of the recalling process are presented. We discuss the mechanism and the characteristics of the Gaussian associative memory based on the results of the analysis and the simulations conducted.展开更多
We describe a homeostasis system with a discrete map that is revealed by stroboscopic “flashes” (Poincaré sections) that are synchronized with the measurement events.
基金The project supported by the Scientific Research Award Foundation for Outstanding Young and Middle-Aged Scientists of Shandong Province of China
文摘A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discrete Hamiltonian systems. A new integrable symplectic map is given by binary Bargmann constraint of the resulting hierarchy. Finally, an infinite set of conservation laws is given for the resulting hierarchy.
基金funded by the Centre for Nonlinear Systems,Chennai Institute of Technology,India[grant number CIT/CNS/2023/RP/008].
文摘Chaotic behavior can be observed in continuous and discrete-time systems.This behavior can appear in one-dimensional nonlinear maps;however,having at least three state variables in flows is necessary.Due to the lower mathematical complexity and computational cost of maps,lots of research has been conducted based on them.This paper aims to present a novel one-dimensional trigonometric chaotic map that is multi-stable and can act attractively.The proposed chaotic map is first analyzed using a single sinusoidal function;then,its abilities are expanded to a map with a combination of two sinusoidal functions.The stability conditions of both maps are investigated,and their different behaviors are validated through time series,state space,and cobweb diagrams.Eventually,the influence of parameter variations on the maps’outputs is examined by one-dimensional and two-dimensional bifurcation diagrams and Lyapunov exponent spectra.Besides,the diversity of outputs with varying initial conditions reveals this map’s multi-stability.The newly designed chaotic map can be employed in encryption applications.
文摘In order to predict bifurcation point of the closed-loop current-programmed boost converter and enable this converter to operate at stable parameter space, this paper firstly establishes stroboscopic maps for this converter in the continuous conduction mode according to operating characteristics and topple of this converter. Parameter space at the steady state and bifurcation types are analysed together with stability theory of nonlinear equation. In the solving course, the duty cycle is avoided because of inversive solution, and accuracy is increased. Finally, correction is proved by numerical calculation.
基金This research was funded by Deanship of Scientific Research,Taif University Researches Supporting Project number(TURSP-2020/216),Taif University,Taif,Saudi Arabia.
文摘This paper introduces an efficient image cryptography system.The pro-posed image cryptography system is based on employing the two-dimensional(2D)chaotic henon map(CHM)in the Discrete Fourier Transform(DFT).The proposed DFT-based CHM image cryptography has two procedures which are the encryption and decryption procedures.In the proposed DFT-based CHM image cryptography,the confusion is employed using the CHM while the diffu-sion is realized using the DFT.So,the proposed DFT-based CHM image crypto-graphy achieves both confusion and diffusion characteristics.The encryption procedure starts by applying the DFT on the image then the DFT transformed image is scrambled using the CHM and the inverse DFT is applied to get the final-ly encrypted image.The decryption procedure follows the inverse procedure of encryption.The proposed DFT-based CHM image cryptography system is exam-ined using a set of security tests like statistical tests,entropy tests,differential tests,and sensitivity tests.The obtained results confirm and ensure the superiority of the proposed DFT-based CHM image cryptography system.These outcomes encourage the employment of the proposed DFT-based CHM image cryptography system in real-time image and video applications.
文摘基于Web of science数据库,以2010~2021年检索的851篇边坡离散元期刊论文为样本,利用Citespace对该领域内论文发表数量、国家/地区和机构、作者和期刊以及高中心性关键词进行文献计量和可视化分析。结果表明:目前中国处于边坡离散元研究领先地位,国际合作较少,核心发文机构为中国科学院和中国地质大学;GEOTECHNIQUE和ENG GEOL杂志为边坡离散元研究的代表性期刊,涉及学科主要为工程技术和地学;自2010~2021年离散元在边坡方向研究的总体发展脉络清晰,前期以完善基础知识为主,后期则着重于结合工程实际。研究结果有助于理清边坡离散元的整体研究脉络,对研究现状和热点提供分析。
基金Project supported by the National Natural Science Foundation of China (Grant No.11161027)the Natural Science Foundation of Gansu Province,China (Grant No. 1010RJZA067)
文摘Fractal structures in a generalized squared map with exponential terms are expanded in this paper. We describe how complex behaviors can arise as the parameters change. The appearances of different kinds of fractal structures, in both the attractive and the divergent regions, and most interestingly, on small regular islands embedded in the chaotic region, are manifested to have a variety of extraordinary geometries in the parameter plane.
文摘Underwater imagery and transmission possess numerous challenges like lower signal bandwidth,slower data transmission bit rates,Noise,underwater blue/green light haze etc.These factors distort the estimation of Region of Interest and are prime hurdles in deploying efficient compression techniques.Due to the presence of blue/green light in underwater imagery,shape adaptive or block-wise compression techniques faces failures as it becomes very difficult to estimate the compression levels/coefficients for a particular region.This method is proposed to efficiently deploy an Extreme Learning Machine(ELM)model-based shape adaptive Discrete Cosine Transformation(DCT)for underwater images.Underwater color image restoration techniques based on veiling light estimation and restoration of images followed by Saliency map estimation based on Gray Level Cooccurrence Matrix(GLCM)features are explained.An ELM network is modeled which takes two parameters,signal strength and saliency value of the region to be compressed and level of compression(DCT coefficients and compression steps)are predicted by ELM.This method ensures lesser errors in the Region of Interest and a better trade-off between available signal strength and compression level.
文摘Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodology by conjugating both temporal pre-processing and spatial clustering approaches in a way to take advantage of multiscale properties of precipitation time series. Annual precipitation data of 51 years(1960-2010) for 31 rain gauges(RGs) were collected and used in proposed clustering approaches. Discreet wavelet transform(DWT) was used to capture the time-frequency attributes of the time series and multiscale regionalization was performed by using k-means and Self Organizing Maps(SOM) clustering techniques. Daubechies function(db) was selected as mother wavelet to decompose the precipitation time series. Also, proper boundary extensions and decomposition level were applied. Different combinations of the approximation(A) and detail(D) coefficients were used to determine the input dataset as a basis of spatial clustering. The proposed model's efficiency in spatial clustering stage was verified using three different indexes namely, Silhouette Coefficient(SC), Dunn index and Davis Bouldin index(DB). Results approved superior performance of k-means technique in comparison to SOM. It was also deduced that DWT-based regionalization methodology showed improvements in comparison to historical-based models. Cross mutual information was used to investigate the RGs of cluster 3's homogeneousness in DWT-k-means approach. Results of non-linear correlation approach verified homogeneity of cluster 3. Verifications based on mean annual precipitation values of rain gauges in each cluster also approved the capability of multiscale approach in precipitation regionalization.
基金funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,through the Research Funding Program,Grant No.(FRP-1443-11).
文摘Patient privacy and data protection have been crucial concerns in Ehealthcare systems for many years.In modern-day applications,patient data usually holds clinical imagery,records,and other medical details.Lately,the Internet of Medical Things(IoMT),equipped with cloud computing,has come out to be a beneficial paradigm in the healthcare field.However,the openness of networks and systems leads to security threats and illegal access.Therefore,reliable,fast,and robust security methods need to be developed to ensure the safe exchange of healthcare data generated from various image sensing and other IoMT-driven devices in the IoMT network.This paper presents an image protection scheme for healthcare applications to protect patients’medical image data exchanged in IoMT networks.The proposed security scheme depends on an enhanced 2D discrete chaotic map and allows dynamic substitution based on an optimized highly-nonlinear S-box and diffusion to gain an excellent security performance.The optimized S-box has an excellent nonlinearity score of 112.The new image protection scheme is efficient enough to exhibit correlation values less than 0.0022,entropy values higher than 7.999,and NPCR values around 99.6%.To reveal the efficacy of the scheme,several comparison studies are presented.These comparison studies reveal that the novel protection scheme is robust,efficient,and capable of securing healthcare imagery in IoMT systems.
文摘This paper proposes an associative memory model based on a coupled system of Gaussian maps. A one-dimensional Gaussian map describes a discrete-time dynamical system, and the coupled system of Gaussian maps can generate various phenomena including asymmetric fixed and periodic points. The Gaussian associative memory can effectively recall one of the stored patterns, which were triggered by an input pattern by associating the asymmetric two-periodic points observed in the coupled system with the binary values of output patterns. To investigate the Gaussian associative memory model, we formed its reduced model and analyzed the bifurcation structure. Pseudo-patterns were observed for the proposed model along with other conventional associative memory models, and the obtained patterns were related to the high-order or quasi-periodic points and the chaotic trajectories. In this paper, the structure of the Gaussian associative memory and its reduced models are introduced as well as the results of the bifurcation analysis are presented. Furthermore, the output sequences obtained from simulation of the recalling process are presented. We discuss the mechanism and the characteristics of the Gaussian associative memory based on the results of the analysis and the simulations conducted.
文摘We describe a homeostasis system with a discrete map that is revealed by stroboscopic “flashes” (Poincaré sections) that are synchronized with the measurement events.