A two-dimensional directional modulation(DM)technology with dual-mode orbital angular momentum(OAM)beam is proposed for physical-layer security of the relay unmanned aerial vehicle(UAV)tracking transmission.The elevat...A two-dimensional directional modulation(DM)technology with dual-mode orbital angular momentum(OAM)beam is proposed for physical-layer security of the relay unmanned aerial vehicle(UAV)tracking transmission.The elevation and azimuth of the vortex beam are modulated into the constellation.which can form the digital waveform with the encoding modulation.Since the signal is direction-dependent,the modulated waveform is purposely distorted in other directions to offer a security technology.Two concentric uniform circular arrays(UCAs)with different radii are excited to generate dual vortex beams with orthogonality for the composite signal,which can increase the demodulation difficulty.Due to the phase propagation characteristics of vortex beam,the constellation at the desired azimuth angle will change continuously within a wavelength.A desired single antenna receiver can use the propagation phase compensation and an opposite helical phase factor for the signal demodulation in the desired direction.Simulations show that the proposed OAM-DM scheme offers a security approach with direction sensitivity transmission.展开更多
文摘方向调制(Directional modulation,DM)作为无线物理层安全传输的关键技术能够很好地提升系统的安全性能。然而,由于在角度测量过程中存在误差,因此需要在设计有用信号波束成形向量和人工噪声(Artificial noise,AN)投影矩阵时考虑角度误差,从而提升系统安全性能。本文首先描述了DM系统模型,然后介绍了到达角(Direction of arrival,DOA)估计技术、稳健波束成形设计的3种算法及功率分配技术。仿真表明:稳健波束成形合成方法的性能明显要优于非稳健合成方法,且有用信号和AN之间最优功率分配能明显提高安全速率性能。最后,对DM未来新的发展方向与所面临的挑战性等开放问题进行展望与总结。
基金supported by the National Natural Science Foundation of China(62031017,61971221)the Aeronautical Science Foundation of China(201901052001)。
文摘A two-dimensional directional modulation(DM)technology with dual-mode orbital angular momentum(OAM)beam is proposed for physical-layer security of the relay unmanned aerial vehicle(UAV)tracking transmission.The elevation and azimuth of the vortex beam are modulated into the constellation.which can form the digital waveform with the encoding modulation.Since the signal is direction-dependent,the modulated waveform is purposely distorted in other directions to offer a security technology.Two concentric uniform circular arrays(UCAs)with different radii are excited to generate dual vortex beams with orthogonality for the composite signal,which can increase the demodulation difficulty.Due to the phase propagation characteristics of vortex beam,the constellation at the desired azimuth angle will change continuously within a wavelength.A desired single antenna receiver can use the propagation phase compensation and an opposite helical phase factor for the signal demodulation in the desired direction.Simulations show that the proposed OAM-DM scheme offers a security approach with direction sensitivity transmission.