引入了相容 L Domain概念 ,给出了相容 L Domain的多种内部的和外部的刻画 ;利用 Scott拓扑定义了相容 L Domain的定向完备化 ,证明了相容 L Domain的定向完备化是 L Domain;考察了相容L Domain范畴 ,得知稳定映射为态射的相容 L Domai...引入了相容 L Domain概念 ,给出了相容 L Domain的多种内部的和外部的刻画 ;利用 Scott拓扑定义了相容 L Domain的定向完备化 ,证明了相容 L Domain的定向完备化是 L Domain;考察了相容L Domain范畴 ,得知稳定映射为态射的相容 L Domain范畴是 Cartesian闭范畴 ,证明了稳定映射为态射的 L Domain范畴为相容 L展开更多
This paper investigates the consensus problem for linear multi-agent systems with the heterogeneous disturbances generated by the Brown motion.Its main contribution is that a control scheme is designed to achieve the ...This paper investigates the consensus problem for linear multi-agent systems with the heterogeneous disturbances generated by the Brown motion.Its main contribution is that a control scheme is designed to achieve the dynamic consensus for the multi-agent systems in directed topology interfered by stochastic noise.In traditional ways,the coupling weights depending on the communication structure are static.A new distributed controller is designed based on Riccati inequalities,while updating the coupling weights associated with the gain matrix by state errors between adjacent agents.By introducing time-varying coupling weights into this novel control law,the state errors between leader and followers asymptotically converge to the minimum value utilizing the local interaction.Through the Lyapunov directed method and It?formula,the stability of the closed-loop system with the proposed control law is analyzed.Two simulation results conducted by the new and traditional schemes are presented to demonstrate the effectiveness and advantage of the developed control method.展开更多
This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended ...This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended State Observer(FTCESO)based fully-distributed formation control scheme is proposed to enhance the disturbance rejection and the formation tracking performances for networked quadrotors.By adopting the hierarchical control strategy,the multiquadrotor system is separated into two subsystems:the outer-loop cooperative subsystem and the inner-loop attitude subsystem.In the outer-loop subsystem,with the estimation of disturbing forces and uncertain dynamics from FTCESOs,an adaptive consensus theory based cooperative controller is exploited to ensure the multiple quadrotors form and maintain a time-varying pattern relying only on the positions of the neighboring aircrafts.In the inner-loop subsystem,the desired attitude generated by the cooperative control law is stably tracked under a FTCESO-based attitude controller in a finite time.Based on a detailed algorithm to specify the cooperative control protocol,the feasibility condition to achieve the time-varying anti-disturbance formation tracking is derived and the rigorous analysis of the whole closed-loop multi-quadrotor system is given.Some numerical examples are conducted to intuitively demonstrate the effectiveness and the improvements of the proposed control framework.展开更多
This paper studies the attitude synchronization tracking control of spacecraft formation flying with a directed communication topology and presents three different controllers. By introducing a novel error variable as...This paper studies the attitude synchronization tracking control of spacecraft formation flying with a directed communication topology and presents three different controllers. By introducing a novel error variable associated with rotation matrix, a decentralized attitude synchronization controller, which could obtain almost global asymptotical stability of the closed-loop system, is developed. Then, considering model uncertainties and unknown external disturbances, we propose a robust adaptive attitude synchronization controller by designing adaptive laws to estimate the unknown parameters. After that, the third controller is proposed by extending this method to the case of time-varying communication delays via Lyapunov-Krasovskii analysis. The distinctive feature of this work is to address attitude coordinated control with model uncertainties, unknown disturbances and time-varying delays in a decentralized framework, with a strongly connected directed information flow. It is shown that tracking and synchronization of an arbitrary desired attitude can be achieved when the stability condition is satisfied. Simulation results are provided to demonstrate the effectiveness of the proposed control schemes. (C) 2016 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is an open access article under the CC BY-NC-ND license.展开更多
This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynami...This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.展开更多
In this paper, a decentralized fault-tolerant cooperative control scheme is developed for multiple unmanned aerial vehicles(UAVs) in the presence of actuator faults and a directed communication network. To counteract ...In this paper, a decentralized fault-tolerant cooperative control scheme is developed for multiple unmanned aerial vehicles(UAVs) in the presence of actuator faults and a directed communication network. To counteract in-flight actuator faults and enhance formation flight safety, neural networks(NNs) are used to approximate unknown nonlinear terms due to the inherent nonlinearities in UAV models and the actuator loss of control effectiveness faults. To further compensate for NN approximation errors and actuator bias faults, the disturbance observer(DO) technique is incorporated into the control scheme to increase the composite approximation capability.Moreover, the prediction errors, which represent the approximation qualities of the states induced by NNs and DOs to the measured states, are integrated into the developed fault-tolerant cooperative control scheme. Furthermore,prescribed performance functions are imposed on the attitude synchronization tracking errors, to guarantee the prescribed synchronization tracking performance. One of the key features of the proposed strategy is that unknown terms due to the inherent nonlinearities in UAVs and actuator faults are compensated for by the composite approximators constructed by NNs, DOs, and prediction errors. Another key feature is that the attitude synchronization tracking errors are strictly constrained within the prescribed bounds. Finally, simulation results are provided and have demonstrated the effectiveness of the proposed control scheme.展开更多
Achieving asymptotical cooperative goal for multi-agent systems(MASs)with non-autonomous leaders(i.e.,leaders with nonzero inputs)is a critical but challenging issue.Traditional approach is to use discontinuous contro...Achieving asymptotical cooperative goal for multi-agent systems(MASs)with non-autonomous leaders(i.e.,leaders with nonzero inputs)is a critical but challenging issue.Traditional approach is to use discontinuous controllers which may cause chattering phenomenon in practical applications.How to achieve the asymptotical goal via a chattering free cooperative controller remains to be open so far.In this paper,an adaptive continuous controller is designed to achieve zero error consensus tracking in multiple Lur’e systems with a non-autonomous leader under directed switching topology.Firstly,an unknown input observer(UIO)based on relative outputs is given to estimate the relative full states.Then an adaptive continuous controller is designed by introducing a decay function which remains positive into the term that plays the role of eliminating the impacts of leader’s nonzero inputs.Secondly,by using multiple Lyapunov functions(MLFs)technique,it is proven that zero error consensus tracking can be achieved if the average dwell time(ADT)is greater than a positive threshold.Finally,theoretical result is verified by performing simulations on Chua’s circuits.Compared with existing work,the proposed controller can not only achieve asymptotical consensus,but also is chattering free.展开更多
文摘引入了相容 L Domain概念 ,给出了相容 L Domain的多种内部的和外部的刻画 ;利用 Scott拓扑定义了相容 L Domain的定向完备化 ,证明了相容 L Domain的定向完备化是 L Domain;考察了相容L Domain范畴 ,得知稳定映射为态射的相容 L Domain范畴是 Cartesian闭范畴 ,证明了稳定映射为态射的 L Domain范畴为相容 L
基金supported in part by the National Natural Science Foundation of China(61722312,61533017,62073321)the National Key Research and Development Program of China(2018YFB1702300)。
文摘This paper investigates the consensus problem for linear multi-agent systems with the heterogeneous disturbances generated by the Brown motion.Its main contribution is that a control scheme is designed to achieve the dynamic consensus for the multi-agent systems in directed topology interfered by stochastic noise.In traditional ways,the coupling weights depending on the communication structure are static.A new distributed controller is designed based on Riccati inequalities,while updating the coupling weights associated with the gain matrix by state errors between adjacent agents.By introducing time-varying coupling weights into this novel control law,the state errors between leader and followers asymptotically converge to the minimum value utilizing the local interaction.Through the Lyapunov directed method and It?formula,the stability of the closed-loop system with the proposed control law is analyzed.Two simulation results conducted by the new and traditional schemes are presented to demonstrate the effectiveness and advantage of the developed control method.
文摘This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended State Observer(FTCESO)based fully-distributed formation control scheme is proposed to enhance the disturbance rejection and the formation tracking performances for networked quadrotors.By adopting the hierarchical control strategy,the multiquadrotor system is separated into two subsystems:the outer-loop cooperative subsystem and the inner-loop attitude subsystem.In the outer-loop subsystem,with the estimation of disturbing forces and uncertain dynamics from FTCESOs,an adaptive consensus theory based cooperative controller is exploited to ensure the multiple quadrotors form and maintain a time-varying pattern relying only on the positions of the neighboring aircrafts.In the inner-loop subsystem,the desired attitude generated by the cooperative control law is stably tracked under a FTCESO-based attitude controller in a finite time.Based on a detailed algorithm to specify the cooperative control protocol,the feasibility condition to achieve the time-varying anti-disturbance formation tracking is derived and the rigorous analysis of the whole closed-loop multi-quadrotor system is given.Some numerical examples are conducted to intuitively demonstrate the effectiveness and the improvements of the proposed control framework.
基金supported by the National Natural Science Foundation of China (Nos. 61573115 and 61333003)
文摘This paper studies the attitude synchronization tracking control of spacecraft formation flying with a directed communication topology and presents three different controllers. By introducing a novel error variable associated with rotation matrix, a decentralized attitude synchronization controller, which could obtain almost global asymptotical stability of the closed-loop system, is developed. Then, considering model uncertainties and unknown external disturbances, we propose a robust adaptive attitude synchronization controller by designing adaptive laws to estimate the unknown parameters. After that, the third controller is proposed by extending this method to the case of time-varying communication delays via Lyapunov-Krasovskii analysis. The distinctive feature of this work is to address attitude coordinated control with model uncertainties, unknown disturbances and time-varying delays in a decentralized framework, with a strongly connected directed information flow. It is shown that tracking and synchronization of an arbitrary desired attitude can be achieved when the stability condition is satisfied. Simulation results are provided to demonstrate the effectiveness of the proposed control schemes. (C) 2016 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is an open access article under the CC BY-NC-ND license.
基金supported in part by the National Natural Science Foundation of China(51939001,61976033,62273072)the Natural Science Foundation of Sichuan Province (2022NSFSC0903)。
文摘This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.
基金the National Natural Science Foundation of China (Nos. 61833013, 61573282, and 61473229)the Natural Science Foundation of Shaanxi Province, China (No. 2015JZ020)the Natural Sciences and Engineering Research Council of Canada.
文摘In this paper, a decentralized fault-tolerant cooperative control scheme is developed for multiple unmanned aerial vehicles(UAVs) in the presence of actuator faults and a directed communication network. To counteract in-flight actuator faults and enhance formation flight safety, neural networks(NNs) are used to approximate unknown nonlinear terms due to the inherent nonlinearities in UAV models and the actuator loss of control effectiveness faults. To further compensate for NN approximation errors and actuator bias faults, the disturbance observer(DO) technique is incorporated into the control scheme to increase the composite approximation capability.Moreover, the prediction errors, which represent the approximation qualities of the states induced by NNs and DOs to the measured states, are integrated into the developed fault-tolerant cooperative control scheme. Furthermore,prescribed performance functions are imposed on the attitude synchronization tracking errors, to guarantee the prescribed synchronization tracking performance. One of the key features of the proposed strategy is that unknown terms due to the inherent nonlinearities in UAVs and actuator faults are compensated for by the composite approximators constructed by NNs, DOs, and prediction errors. Another key feature is that the attitude synchronization tracking errors are strictly constrained within the prescribed bounds. Finally, simulation results are provided and have demonstrated the effectiveness of the proposed control scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.62003003 and 62073076)the Natural Science Foundation of Anhui Province(Grant No.2008085QF304)the Talent Programme of Anhui Province for Young Scholars。
文摘Achieving asymptotical cooperative goal for multi-agent systems(MASs)with non-autonomous leaders(i.e.,leaders with nonzero inputs)is a critical but challenging issue.Traditional approach is to use discontinuous controllers which may cause chattering phenomenon in practical applications.How to achieve the asymptotical goal via a chattering free cooperative controller remains to be open so far.In this paper,an adaptive continuous controller is designed to achieve zero error consensus tracking in multiple Lur’e systems with a non-autonomous leader under directed switching topology.Firstly,an unknown input observer(UIO)based on relative outputs is given to estimate the relative full states.Then an adaptive continuous controller is designed by introducing a decay function which remains positive into the term that plays the role of eliminating the impacts of leader’s nonzero inputs.Secondly,by using multiple Lyapunov functions(MLFs)technique,it is proven that zero error consensus tracking can be achieved if the average dwell time(ADT)is greater than a positive threshold.Finally,theoretical result is verified by performing simulations on Chua’s circuits.Compared with existing work,the proposed controller can not only achieve asymptotical consensus,but also is chattering free.