Three-layer6009/7050/6009aluminum alloy clad slab was fabricated by an innovative direct-chill casting process.To study the response of the clad slab to plastic deformation and heat treatments,homogenization annealing...Three-layer6009/7050/6009aluminum alloy clad slab was fabricated by an innovative direct-chill casting process.To study the response of the clad slab to plastic deformation and heat treatments,homogenization annealing,hot rolling,solution and aging were successively performed on the as-cast6009/7050/6009clad samples.The results revealed that excellent metallurgical bonding between7050alloy layer and6009alloy layer was achieved under optimal parameters.The clad ratio obviously decreased when the annealed sample was rolled to55%hot reduction level,and then changed slightly with further rolling.Furthermore,the content of rodlike Zn-rich phases increased significantly in7050alloy layer in the homogenized clad samples after rolling at55%,65%and75%hot reduction levels,and the higher level of hot reduction resulted in narrower diffusion layer.Subsequent solution and aging significantly improved the hardness in7050alloy layer,interfaces and6009alloy layers of the rolled samples except for the thin side for the75%hot reduction sample.展开更多
The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In o...The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for com- plicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion with- out transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on thedynamic test benches are conducted. The results indicate that the output torque can attain to 420 N-m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive, the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accu- racy direct driving device in plastic forming equipment.展开更多
The resilient modulus,accumulated plastic strain,peak shear stress,and critical shear stress are the elastoplastic behaviors of frozen sand–concrete interfaces under cyclic shear loading.They reflect the bearing capa...The resilient modulus,accumulated plastic strain,peak shear stress,and critical shear stress are the elastoplastic behaviors of frozen sand–concrete interfaces under cyclic shear loading.They reflect the bearing capacity of buildings(e.g.highspeed railways)in both seasonal frozen and permafrost regions.This study describes a series of direct shear experiments conducted on frozen sand–concrete interfaces.The results indicated that the elastoplastic behaviors of frozen sand–concrete interfaces,including the resilient modulus,accumulated plastic strain,and shear strength,are influenced by the boundary conditions(constant normal loading and constant normal height),initial normal stress,negative temperature,and cyclic-loading amplitude.The resilient modulus was significantly correlated with the initial normal stress and negative temperature,but not with the cyclic-loading amplitude and loading cycles.The accumulated plastic shear strain increased when the initial normal stress and cyclic-loading amplitude increased and the temperature decreased.Moreover,the accumulated plastic shear strain increment decreased when the loading cycles increased.The accumulated direction also varied with changes in the initial normal stress,negative temperature,and cyclic-loading amplitude.The peak shear stress of the frozen sand–concrete interface was affected by the initial normal stress,negative temperature,cyclic-loading amplitude,and boundary conditions.Nevertheless,a correlation was observed between the critical shear stress and the initial normal stress and boundary conditions.The peak shear stress was higher,and the critical shear stress was lower under the constant normal height boundary condition.Based on the results,it appears that the properties of frozen sand–concrete interfaces,including plastic deformation properties and stress strength properties,are influenced by cyclic shear stress.These results provide valuable information for the investigation of constitutive models of frozen soil–structure interfaces.展开更多
基金Projects(51375070,51574058) supported by the National Natural Science Foundation of China
文摘Three-layer6009/7050/6009aluminum alloy clad slab was fabricated by an innovative direct-chill casting process.To study the response of the clad slab to plastic deformation and heat treatments,homogenization annealing,hot rolling,solution and aging were successively performed on the as-cast6009/7050/6009clad samples.The results revealed that excellent metallurgical bonding between7050alloy layer and6009alloy layer was achieved under optimal parameters.The clad ratio obviously decreased when the annealed sample was rolled to55%hot reduction level,and then changed slightly with further rolling.Furthermore,the content of rodlike Zn-rich phases increased significantly in7050alloy layer in the homogenized clad samples after rolling at55%,65%and75%hot reduction levels,and the higher level of hot reduction resulted in narrower diffusion layer.Subsequent solution and aging significantly improved the hardness in7050alloy layer,interfaces and6009alloy layers of the rolled samples except for the thin side for the75%hot reduction sample.
基金Supported by National Natural Science Foundation of China(Grant No.51335009)Major National Science and Technology Project of China(Grant No.2011ZX04001-011)
文摘The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for com- plicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion with- out transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on thedynamic test benches are conducted. The results indicate that the output torque can attain to 420 N-m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive, the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accu- racy direct driving device in plastic forming equipment.
基金supported by the National Natural Science Foundation of China(No.41731281)the Key Foundation of Guangdong Province(No.2020B1515120083),China。
文摘The resilient modulus,accumulated plastic strain,peak shear stress,and critical shear stress are the elastoplastic behaviors of frozen sand–concrete interfaces under cyclic shear loading.They reflect the bearing capacity of buildings(e.g.highspeed railways)in both seasonal frozen and permafrost regions.This study describes a series of direct shear experiments conducted on frozen sand–concrete interfaces.The results indicated that the elastoplastic behaviors of frozen sand–concrete interfaces,including the resilient modulus,accumulated plastic strain,and shear strength,are influenced by the boundary conditions(constant normal loading and constant normal height),initial normal stress,negative temperature,and cyclic-loading amplitude.The resilient modulus was significantly correlated with the initial normal stress and negative temperature,but not with the cyclic-loading amplitude and loading cycles.The accumulated plastic shear strain increased when the initial normal stress and cyclic-loading amplitude increased and the temperature decreased.Moreover,the accumulated plastic shear strain increment decreased when the loading cycles increased.The accumulated direction also varied with changes in the initial normal stress,negative temperature,and cyclic-loading amplitude.The peak shear stress of the frozen sand–concrete interface was affected by the initial normal stress,negative temperature,cyclic-loading amplitude,and boundary conditions.Nevertheless,a correlation was observed between the critical shear stress and the initial normal stress and boundary conditions.The peak shear stress was higher,and the critical shear stress was lower under the constant normal height boundary condition.Based on the results,it appears that the properties of frozen sand–concrete interfaces,including plastic deformation properties and stress strength properties,are influenced by cyclic shear stress.These results provide valuable information for the investigation of constitutive models of frozen soil–structure interfaces.