As high-voltage direct current(HVDC)lines with large capacity are being commissioned with higher frequency,the characteristics of“strong”DC and“weak”AC transmission in the power grid are topics of interest.In part...As high-voltage direct current(HVDC)lines with large capacity are being commissioned with higher frequency,the characteristics of“strong”DC and“weak”AC transmission in the power grid are topics of interest.In particular,the coupling and interaction between the sending-side and receivingside AC systems interconnected by large-scale DC links is gaining importance.In this paper,the impact of the multiple HVDC commutation failure on the stability of the sending system under different power flow directions is analyzed based on the threearea AC/DC equivalent model.The main influencing factors and the counter-measures are discussed,and the single HVDC line blocking is taken as a comparison.Finally,the results are verified using the North China-Central China-East China power grid case system.The study provides a basis and reference to ensure security and stability of the ultra-high-voltage(UHV)AC/DC hybrid power grid.展开更多
The increasing flexibility of active distribution systems(ADSs)coupled with the high penetration of renewable distributed generators(RDGs)leads to the increase of the complexity.It is of practical significance to achi...The increasing flexibility of active distribution systems(ADSs)coupled with the high penetration of renewable distributed generators(RDGs)leads to the increase of the complexity.It is of practical significance to achieve the largest amount of RDG penetration in ADSs and maintain the optimal operation.This study establishes an alternating current(AC)/direct current(DC)hybrid ADS model that considers the dynamic thermal rating,soft open point,and distribution network reconfiguration(DNR).Moreover,it transforms the optimal dispatching into a second-order cone programming problem.Considering the different control time scales of dispatchable resources,the following two-stage dispatching framework is proposed.d dispatch uses hourly input data with the goal(1)The day-ahea of minimizing the grid loss and RDG dropout.It obtains the optimal 24-hour schedule to determine the dispatching plans for DNR and the energy storage system.(2)The intraday dispatch uses 15-min input data for 1-hour rolling-plan dispatch but only executes the first 15 min of dispatching.To eliminate error between the actual operation and dispatching plan,the first 15 min is divided into three 5-min step-by-step executions.The goal of each step is to trace the tie-line power of the intraday rolling-plan dispatch to the greatest extent at the minimum cost.The measured data are used as feedback input for the rolling-plan dispatch after each step is executed.A case study shows that the comprehensive cooperative ADS model can release the line capacity,reduce losses,and improve the penetration rate of RDGs.Further,the two-stage dispatching framework can handle source-load fluctuations and enhance system stability.展开更多
基金This work was supported by Technology Projects of State Grid Corporation of China(No.XT71-15-050).
文摘As high-voltage direct current(HVDC)lines with large capacity are being commissioned with higher frequency,the characteristics of“strong”DC and“weak”AC transmission in the power grid are topics of interest.In particular,the coupling and interaction between the sending-side and receivingside AC systems interconnected by large-scale DC links is gaining importance.In this paper,the impact of the multiple HVDC commutation failure on the stability of the sending system under different power flow directions is analyzed based on the threearea AC/DC equivalent model.The main influencing factors and the counter-measures are discussed,and the single HVDC line blocking is taken as a comparison.Finally,the results are verified using the North China-Central China-East China power grid case system.The study provides a basis and reference to ensure security and stability of the ultra-high-voltage(UHV)AC/DC hybrid power grid.
基金supported by Universiti Sains Malaysia through Research University Team(RUTeam)Grant Scheme(No.1001/PELECT/8580011)。
文摘The increasing flexibility of active distribution systems(ADSs)coupled with the high penetration of renewable distributed generators(RDGs)leads to the increase of the complexity.It is of practical significance to achieve the largest amount of RDG penetration in ADSs and maintain the optimal operation.This study establishes an alternating current(AC)/direct current(DC)hybrid ADS model that considers the dynamic thermal rating,soft open point,and distribution network reconfiguration(DNR).Moreover,it transforms the optimal dispatching into a second-order cone programming problem.Considering the different control time scales of dispatchable resources,the following two-stage dispatching framework is proposed.d dispatch uses hourly input data with the goal(1)The day-ahea of minimizing the grid loss and RDG dropout.It obtains the optimal 24-hour schedule to determine the dispatching plans for DNR and the energy storage system.(2)The intraday dispatch uses 15-min input data for 1-hour rolling-plan dispatch but only executes the first 15 min of dispatching.To eliminate error between the actual operation and dispatching plan,the first 15 min is divided into three 5-min step-by-step executions.The goal of each step is to trace the tie-line power of the intraday rolling-plan dispatch to the greatest extent at the minimum cost.The measured data are used as feedback input for the rolling-plan dispatch after each step is executed.A case study shows that the comprehensive cooperative ADS model can release the line capacity,reduce losses,and improve the penetration rate of RDGs.Further,the two-stage dispatching framework can handle source-load fluctuations and enhance system stability.