This study unveils the evolution of two major early signals in the North Pacific atmosphere-ocean system that heralded abnormal high-pressure blockings and cold-vortex activities across Northeast China, based on an an...This study unveils the evolution of two major early signals in the North Pacific atmosphere-ocean system that heralded abnormal high-pressure blockings and cold-vortex activities across Northeast China, based on an analysis of the configurations of major modes including the polar vortex, the North Pacific Oscillation (NPO), and SST in the preceding winter and spring and atmospheric low-frequency disturbances in Northeast China. We analyzed these aspects to understand the atmosphere ocean physical coupling processes characterized by the two early signals, and here we explain the possible mechanisms through which dipole circulation anomalies affect the summer low-temperature processes in Northeast China. We further analyzed the interdecadal variation background and associated physical processes of the two early signals.展开更多
Toroidal multipole is a special current distribution that has many different characteristics from electric multipole and magnetic multipole distributions.Because of its special properties,the toroidal dipole is a rese...Toroidal multipole is a special current distribution that has many different characteristics from electric multipole and magnetic multipole distributions.Because of its special properties,the toroidal dipole is a research hotspot in the field of metamaterials and nanophotonics.However,the low scattering of the toroidal dipole moment makes its excitation a challenging task.At present,there are relatively few studies on its specific engineering applications.In this paper,by slotting in the rectangular cavity,the excitation of an equivalent toroidal dipole is successfully achieved over a wide frequency range of 53-58 GHz.Results indicate that under the action of the toroidal dipole,the TE_(10)mode electromagnetic waves transmitted in the rectangular waveguide are converted into vector beams and are radiated outwards.Further adjusting the spatial distribution of the magnetic dipoles in the toroidal dipoles yields results that indicate that the resonance mode in the slot is still dominated by the magnetic toroidal dipole moment,and the electromagnetic waves radiating outward are vortex beams carrying vector polarization.The scattered energy of each dipole moment inside the antenna is calculated.This calculation verifies that the mass of the vector beam and vector vortex beam is closely related to the toroidal dipole supported by this antenna.The proposed structure can be applied to explorations in vortex filtering,in photon entanglement,and in the photonic spin Hall effect.展开更多
The Unsteady Vortex Lattice Method(UVLM) is a medium-fidelity aerodynamic tool that has been widely used in aeroelasticity and flight dynamics simulations. The most timeconsuming step is the evaluation of the induced ...The Unsteady Vortex Lattice Method(UVLM) is a medium-fidelity aerodynamic tool that has been widely used in aeroelasticity and flight dynamics simulations. The most timeconsuming step is the evaluation of the induced velocity. Supposing that the number of bound and wake lattices is N and the computational cost is O (N2), we present an OeNT Dipole Panel Fast Multipole Method(DPFMM) for the rapid evaluation of the induced velocity in UVLM. The multipole expansion coefficients of a quadrilateral dipole panel have been derived in spherical coordinates, whose accuracy is the same as that of the Biot-Savart kernel at the same truncation degree P.Two methods(the loosening method and the shrinking method) are proposed and tested for space partitioning volumetric panels. Compared with FMM for vortex filaments(with three harmonics),DPFMM is approximately two times faster for N2 [103,106]. The simulation time of a multirotor(N~104) is reduced from 100 min(with unaccelerated direct solver) to 2 min(with DPFMM).展开更多
Introduction Chirality is defined as the absence of inversion symmetry,however,it is actually a pseudo-scalar of objects or figures,and does not depend for its definition on any connection to the physical world[1-5]. ...Introduction Chirality is defined as the absence of inversion symmetry,however,it is actually a pseudo-scalar of objects or figures,and does not depend for its definition on any connection to the physical world[1-5]. Logically,chiral molecules may possess other inherent physical quantity that guarantees the connection to the physical world[6,7].展开更多
An investigation into the flow characteristic on a flat plate induced by an unsteady plasma was conducted with the methods of direct numerical simulations(DNS).A simplified model of dielectric barrier discharge(DBD...An investigation into the flow characteristic on a flat plate induced by an unsteady plasma was conducted with the methods of direct numerical simulations(DNS).A simplified model of dielectric barrier discharge(DBD) plasma was applied and its parameters were calibrated with the experimental results.In the simulations,effects of the actuation frequency on the flow were examined.The instantaneous flow parameters were also drawn to serve as a detailed study on the behavior when the plasma actuator was applied to the flow.The result shows that induced by the unsteady actuation,a series of vortex pairs which showed dipole formation and periodicity distribution were formed in the boundary layer.The production of these vortex pairs indicated a strong energy exchange between the main flow and the boundary layer.They moved downstream under the action of the free stream and decayed under the influence of the fluid viscosity.The distance of the neighboring vortices was found to be determined by the actuation frequency.Interaction of the neighboring vortices would be ignored when the actuation frequency was too small to make a difference.展开更多
Light emitted by an atomic source of radiation appears to travel along a straight line (ray) from the location of the source to the observer in the far field. However, when the energy flow pattern of the radiation i...Light emitted by an atomic source of radiation appears to travel along a straight line (ray) from the location of the source to the observer in the far field. However, when the energy flow pattern of the radiation is resolved with an accuracy better than an optical wavelength, it turns out that the field lines are usually curved. We consider electric dipole radiation, a prime example of which is the radiation emitted by an atom during an electronic transition, and we show that the field lines of energy flow are in general curves. Near the location of the dipole, the field lines exhibit a vortex structure, and in the far field they approach a straight line. The spatial extension of the vortex in the optical near field is of nanoscale dimension. Due to the rotation of the field lines near the source, the asymptotic limit of a field line is not exactly in the radially outward direction and as a consequence, the image in the far field is slightly shifted. This sub-wavelength displacement of the image of the source should be amenable to experimental observation with contemporary nanoscale-precision techniques.展开更多
In a quasi-two-dimensional model, the scattering of incident ordinary electromag- netic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering c...In a quasi-two-dimensional model, the scattering of incident ordinary electromag- netic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia〈〈1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approximation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then kia 〈〈 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering crosssection. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41175083 and 41275096)the Special Fund for Meteorological Scientific Research in the Public Interest (Grant Nos. GYHY201006020,GYHY201106016,and GYHY201106015)
文摘This study unveils the evolution of two major early signals in the North Pacific atmosphere-ocean system that heralded abnormal high-pressure blockings and cold-vortex activities across Northeast China, based on an analysis of the configurations of major modes including the polar vortex, the North Pacific Oscillation (NPO), and SST in the preceding winter and spring and atmospheric low-frequency disturbances in Northeast China. We analyzed these aspects to understand the atmosphere ocean physical coupling processes characterized by the two early signals, and here we explain the possible mechanisms through which dipole circulation anomalies affect the summer low-temperature processes in Northeast China. We further analyzed the interdecadal variation background and associated physical processes of the two early signals.
基金supported by the National Key R&D Program of China(No.2021YFC290202)the National Natural Science Foundation of China(No.51874301)the Primary Research&Development Plan of Xuzhou City(No.KC20162)。
文摘Toroidal multipole is a special current distribution that has many different characteristics from electric multipole and magnetic multipole distributions.Because of its special properties,the toroidal dipole is a research hotspot in the field of metamaterials and nanophotonics.However,the low scattering of the toroidal dipole moment makes its excitation a challenging task.At present,there are relatively few studies on its specific engineering applications.In this paper,by slotting in the rectangular cavity,the excitation of an equivalent toroidal dipole is successfully achieved over a wide frequency range of 53-58 GHz.Results indicate that under the action of the toroidal dipole,the TE_(10)mode electromagnetic waves transmitted in the rectangular waveguide are converted into vector beams and are radiated outwards.Further adjusting the spatial distribution of the magnetic dipoles in the toroidal dipoles yields results that indicate that the resonance mode in the slot is still dominated by the magnetic toroidal dipole moment,and the electromagnetic waves radiating outward are vortex beams carrying vector polarization.The scattered energy of each dipole moment inside the antenna is calculated.This calculation verifies that the mass of the vector beam and vector vortex beam is closely related to the toroidal dipole supported by this antenna.The proposed structure can be applied to explorations in vortex filtering,in photon entanglement,and in the photonic spin Hall effect.
文摘The Unsteady Vortex Lattice Method(UVLM) is a medium-fidelity aerodynamic tool that has been widely used in aeroelasticity and flight dynamics simulations. The most timeconsuming step is the evaluation of the induced velocity. Supposing that the number of bound and wake lattices is N and the computational cost is O (N2), we present an OeNT Dipole Panel Fast Multipole Method(DPFMM) for the rapid evaluation of the induced velocity in UVLM. The multipole expansion coefficients of a quadrilateral dipole panel have been derived in spherical coordinates, whose accuracy is the same as that of the Biot-Savart kernel at the same truncation degree P.Two methods(the loosening method and the shrinking method) are proposed and tested for space partitioning volumetric panels. Compared with FMM for vortex filaments(with three harmonics),DPFMM is approximately two times faster for N2 [103,106]. The simulation time of a multirotor(N~104) is reduced from 100 min(with unaccelerated direct solver) to 2 min(with DPFMM).
基金Supported by the National Natural Science Foundation of China(No.60171008)Shanghai Science and Technology Commit-tee(No.0452nm087).
文摘Introduction Chirality is defined as the absence of inversion symmetry,however,it is actually a pseudo-scalar of objects or figures,and does not depend for its definition on any connection to the physical world[1-5]. Logically,chiral molecules may possess other inherent physical quantity that guarantees the connection to the physical world[6,7].
基金supported by the Foundation for Innovative Research Groups of National Natural Science Foundation of China(No.51121004)National Natural Science Foundation of China(No.50976026)
文摘An investigation into the flow characteristic on a flat plate induced by an unsteady plasma was conducted with the methods of direct numerical simulations(DNS).A simplified model of dielectric barrier discharge(DBD) plasma was applied and its parameters were calibrated with the experimental results.In the simulations,effects of the actuation frequency on the flow were examined.The instantaneous flow parameters were also drawn to serve as a detailed study on the behavior when the plasma actuator was applied to the flow.The result shows that induced by the unsteady actuation,a series of vortex pairs which showed dipole formation and periodicity distribution were formed in the boundary layer.The production of these vortex pairs indicated a strong energy exchange between the main flow and the boundary layer.They moved downstream under the action of the free stream and decayed under the influence of the fluid viscosity.The distance of the neighboring vortices was found to be determined by the actuation frequency.Interaction of the neighboring vortices would be ignored when the actuation frequency was too small to make a difference.
文摘Light emitted by an atomic source of radiation appears to travel along a straight line (ray) from the location of the source to the observer in the far field. However, when the energy flow pattern of the radiation is resolved with an accuracy better than an optical wavelength, it turns out that the field lines are usually curved. We consider electric dipole radiation, a prime example of which is the radiation emitted by an atom during an electronic transition, and we show that the field lines of energy flow are in general curves. Near the location of the dipole, the field lines exhibit a vortex structure, and in the far field they approach a straight line. The spatial extension of the vortex in the optical near field is of nanoscale dimension. Due to the rotation of the field lines near the source, the asymptotic limit of a field line is not exactly in the radially outward direction and as a consequence, the image in the far field is slightly shifted. This sub-wavelength displacement of the image of the source should be amenable to experimental observation with contemporary nanoscale-precision techniques.
基金National Natural Science Foundation of China(Nos,10375063.40336052)
文摘In a quasi-two-dimensional model, the scattering of incident ordinary electromag- netic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia〈〈1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approximation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then kia 〈〈 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering crosssection. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.