The global demand for resource sustainability is growing. Thus, the development of single-source, environment-friendly colloidal semiconductor nanocrystal (NC) phosphors with broadband emission spectra is highly des...The global demand for resource sustainability is growing. Thus, the development of single-source, environment-friendly colloidal semiconductor nanocrystal (NC) phosphors with broadband emission spectra is highly desirable for use as color converters in white light-emitting diodes (WLEDs). We report herein the gram-scale synthesis of single-source, cadmium-free, dual-emissive Mn-doped Zn-Cu-In-S NCs (d-dots) by a simple, non-injection, low-cost, one-pot approach. This synthesis method led to the formation of NCs with continuously varying compositions in a radial direction because each precursor had a different reactivity. Consequently, the d-dots exhibited two emission bands, one that could be attributed to Mn emission and a second that could be ascribed to the band edge of the Zn-Cu-In-S NCs. The emission peaks assigned to band edge were tunable by modifying the particle size and composition. The prepared d-dots also exhibited the characteristic zero self-absorption, a quantum yield of 46%, and good thermal stability. Combining a commercial blue light-emitting diode (LED) chip with optimized d-dots as color converters gave a high color rendering index of up to 90, Commission Internationale de l'eclairage color coordinates of (0.332, 0.321), and a correlated color temperature of 5,680 K. These results suggest that cadmium-free, thermally stable, single-phase d-dot phosphors have potential applications in WLEDs.展开更多
The construction of stable and efficient materials that emit blue and green light remains a challenge.Among the blue light materials reported,metal-organic framework(MOF)materials are rarely reported as blue phosphors...The construction of stable and efficient materials that emit blue and green light remains a challenge.Among the blue light materials reported,metal-organic framework(MOF)materials are rarely reported as blue phosphors due to their weak luminescence intensity.Based on the construction of CsPbBr_(3)@MOF(CPB@MOF),an innovative idea was proposed to simultaneously enhance the green luminescence of CPB and the blue luminescence of MOF through the interaction between CPB and MOF for the first time.As expected,the blue luminescence from CPB:7%SCN−@0.5%MOF:Eu as well as the green luminescence from 5%CPB:7%SCN−@MOF:Eu was sufficient to construct high-performance light-emitting diode(LED)devices and further excite solar cells to generate stable photoelectric signals.The white LED(WLED)device with excellent color quality(color rendering index(CRI)=96.2)and correlated color temperature(CCT=9688 K)can be constructed by using the obtained blue-emitting CPB:7%SCN-@0.5%MOF:Eu,green-emitting 5%CPB:7%SCN−@MOF:Eu,and red-emitting PPB:30%Mn^(2+).The density functional theory(DFT)theoretical calculation results indicate that the p orbital of Pb plays the major role in the conduction band,and the p orbital of Br plays the major role in the valance band of CPB and CPB:SCN−.While the p orbital of O plays the major role in both the conduction band and valance band of MOF.The heat capacity of CPB and CPB:SCN−separately reaches the Dulong–Petit limit at 200 and 400 K,indicating that the thermal stability of CsPbBr_(3)increases after SCN−doping.展开更多
The preparation of high-efficiency phosphor is the key to the construction of white light-emitting diode(WLED)devices and their application in indoor photovoltaics.Compared with YVO_(4),InVO_(4)is not suitable as the ...The preparation of high-efficiency phosphor is the key to the construction of white light-emitting diode(WLED)devices and their application in indoor photovoltaics.Compared with YVO_(4),InVO_(4)is not suitable as the host material of lanthanide ions because of its strong self-luminescence.Here,the work focused on combining the broadband emission from InVO_(4)and the red luminescence from YVO_(4):Eu^(3+)to obtain enhanced and stable multicolor luminescence.The band structure,density of state,and optical properties were studied by density functional theory.The spectral configuration of YVO_(4):In^(3+)/Eu^(3+)with(112)surface appears to be broadening and redshifts with increasing layer number.When the In^(3+)concentration is 3.5 mol%,the YVO_(4):30%Eu^(3+)/In^(3+)emits the strongest light.The Judd-Ofelt parameterΩ2 of YVO_(4):In^(3+)/Eu^(3+)increases with increaing In^(3+)concentration,indicating that the symmetry decreases.By adjusting In^(3+)/Eu^(3+)contents,the YVO_(4):In^(3+)/Eu^(3+)not only can emit white light with a color rendering index of 95,but also can be used as high-efficiency red phosphor to build WLED devices with blue emitting N/Tb codoped carbon quantum dots(CQDs-N:Tb^(3+))and green emitting MOF:Tb^(3+)(MOF=metal organic framework),for which the color rendering index can also reach 95 and the color temperature is 5549 K.The manufactured WLED devices were further used to excite the silicon solar cell and make it show good photoelectric characteristics.展开更多
Lanthanides(Ln^(3+))doped luminescent materials play critical roles in lighting and display techniques.While increasing experimental and theoretical research have been carried out on aluminate-based phosphors for whit...Lanthanides(Ln^(3+))doped luminescent materials play critical roles in lighting and display techniques.While increasing experimental and theoretical research have been carried out on aluminate-based phosphors for white light-emitting diodes(WLEDs)over the past decades,most investigation was mainly focused on their luminescent properties;therefore,the local structure of the light emission center remains unclear.Especially,doping-induced local composition and structure modification around the luminescent centers have yet to be unveiled.In this study,we use advanced electron microscopy techniques including electron diffraction(ED),high-resolution transmission electron microscopy(HRTEM),high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),in combination with energy dispersive X-ray spectroscopy(EDX)and electron energy loss spectroscopy(EELS),to reveal atomically resolved crystalline and chemical structure of Ce^(3+)doped CaYAlO4.The microscopic results prove substantial microstructural and compositional inhomogeneities in Ce^(3+)doped CaYAlO_(4),especially the appearance of Ce dopant clustering and Ce^(3+)/Ce^(4+)valence variation.Our research provides a new understanding the structure of Ln^(3+)doped luminescent materials and will facilitate the materials design for next-generation WLEDs luminescent materials.展开更多
A series of YAG:Ce,Mn transparent ceramics were prepared via a solid-state reaction-vacuum sintering method.The effects of various Mn^2+–Si4+pair doping levels on the structure,transmittance,and luminescence properti...A series of YAG:Ce,Mn transparent ceramics were prepared via a solid-state reaction-vacuum sintering method.The effects of various Mn^2+–Si4+pair doping levels on the structure,transmittance,and luminescence properties were systematically investigated.These transparent ceramics have average grain sizes of 10–16μm,clean grain boundaries,and excellent transmittance up to 83.4%at 800 nm.Under the excitation of 460 nm,three obvious emission peaks appear at 533,590,and 745 nm,which can be assigned to the transition 5 d→4 f of Ce^3+and 4 T1→6 A1 of Mn^2+.Thus,the Mn^2+–Si4+pairs can effectively modulate the emission spectrum by compensating broad orange-red and red spectrum component to yield high quality warm white light.After the optimized YAG:Ce,Mn transparent ceramic packaged with blue light-emitting diode(LED)chips,correlated color temperature(CCT)as low as 3723 K and luminous efficiency(LE)as high as 96.54 lm/W were achieved,implying a very promising candidate for application in white light-emitting diodes(WLEDs)industry.展开更多
We report a unique red light-emitting Eu-doped borosilicate glass to convert color for warm white light-emitting diodes. This glass can be excited from 394 nm-peaked near ultraviolet light, 466 nm-peaked blue light, t...We report a unique red light-emitting Eu-doped borosilicate glass to convert color for warm white light-emitting diodes. This glass can be excited from 394 nm-peaked near ultraviolet light, 466 nm-peaked blue light, to 534 nm- peaked green light to emit the desired red light with an excellent transmission in the wavelength range of 400-700 nm which makes this glass suitable for color conversion without a great cost of luminous power loss. In particular, when assembling this glass for commercial white light-emitting diodes, the tested results show that the color rendering index is improved to 84 with a loss of luminous power by 12 percent at average, making this variety of glass promising for inorganic "remote-phosphor" color conversion.展开更多
基金This work was supported by the National Natural Science Foundation of China (Nos. 21373097 and 51072067) and the National Basic Research Program of China (No. 2011CB935800).
文摘The global demand for resource sustainability is growing. Thus, the development of single-source, environment-friendly colloidal semiconductor nanocrystal (NC) phosphors with broadband emission spectra is highly desirable for use as color converters in white light-emitting diodes (WLEDs). We report herein the gram-scale synthesis of single-source, cadmium-free, dual-emissive Mn-doped Zn-Cu-In-S NCs (d-dots) by a simple, non-injection, low-cost, one-pot approach. This synthesis method led to the formation of NCs with continuously varying compositions in a radial direction because each precursor had a different reactivity. Consequently, the d-dots exhibited two emission bands, one that could be attributed to Mn emission and a second that could be ascribed to the band edge of the Zn-Cu-In-S NCs. The emission peaks assigned to band edge were tunable by modifying the particle size and composition. The prepared d-dots also exhibited the characteristic zero self-absorption, a quantum yield of 46%, and good thermal stability. Combining a commercial blue light-emitting diode (LED) chip with optimized d-dots as color converters gave a high color rendering index of up to 90, Commission Internationale de l'eclairage color coordinates of (0.332, 0.321), and a correlated color temperature of 5,680 K. These results suggest that cadmium-free, thermally stable, single-phase d-dot phosphors have potential applications in WLEDs.
基金supported by the National Natural Science Foundation of China(No.22271080)the Joint Guidance Project of Heilongjiang Natural Science Foundation(No.LH2023B020).
文摘The construction of stable and efficient materials that emit blue and green light remains a challenge.Among the blue light materials reported,metal-organic framework(MOF)materials are rarely reported as blue phosphors due to their weak luminescence intensity.Based on the construction of CsPbBr_(3)@MOF(CPB@MOF),an innovative idea was proposed to simultaneously enhance the green luminescence of CPB and the blue luminescence of MOF through the interaction between CPB and MOF for the first time.As expected,the blue luminescence from CPB:7%SCN−@0.5%MOF:Eu as well as the green luminescence from 5%CPB:7%SCN−@MOF:Eu was sufficient to construct high-performance light-emitting diode(LED)devices and further excite solar cells to generate stable photoelectric signals.The white LED(WLED)device with excellent color quality(color rendering index(CRI)=96.2)and correlated color temperature(CCT=9688 K)can be constructed by using the obtained blue-emitting CPB:7%SCN-@0.5%MOF:Eu,green-emitting 5%CPB:7%SCN−@MOF:Eu,and red-emitting PPB:30%Mn^(2+).The density functional theory(DFT)theoretical calculation results indicate that the p orbital of Pb plays the major role in the conduction band,and the p orbital of Br plays the major role in the valance band of CPB and CPB:SCN−.While the p orbital of O plays the major role in both the conduction band and valance band of MOF.The heat capacity of CPB and CPB:SCN−separately reaches the Dulong–Petit limit at 200 and 400 K,indicating that the thermal stability of CsPbBr_(3)increases after SCN−doping.
基金supported by the National Natural Science Foundation of China(No.22271080).
文摘The preparation of high-efficiency phosphor is the key to the construction of white light-emitting diode(WLED)devices and their application in indoor photovoltaics.Compared with YVO_(4),InVO_(4)is not suitable as the host material of lanthanide ions because of its strong self-luminescence.Here,the work focused on combining the broadband emission from InVO_(4)and the red luminescence from YVO_(4):Eu^(3+)to obtain enhanced and stable multicolor luminescence.The band structure,density of state,and optical properties were studied by density functional theory.The spectral configuration of YVO_(4):In^(3+)/Eu^(3+)with(112)surface appears to be broadening and redshifts with increasing layer number.When the In^(3+)concentration is 3.5 mol%,the YVO_(4):30%Eu^(3+)/In^(3+)emits the strongest light.The Judd-Ofelt parameterΩ2 of YVO_(4):In^(3+)/Eu^(3+)increases with increaing In^(3+)concentration,indicating that the symmetry decreases.By adjusting In^(3+)/Eu^(3+)contents,the YVO_(4):In^(3+)/Eu^(3+)not only can emit white light with a color rendering index of 95,but also can be used as high-efficiency red phosphor to build WLED devices with blue emitting N/Tb codoped carbon quantum dots(CQDs-N:Tb^(3+))and green emitting MOF:Tb^(3+)(MOF=metal organic framework),for which the color rendering index can also reach 95 and the color temperature is 5549 K.The manufactured WLED devices were further used to excite the silicon solar cell and make it show good photoelectric characteristics.
基金funded by the National Natural Science Foundation of China(Nos.52002357,22105175,and 51932009)P.L.acknowledges the financial support from the Carlsberg Foundation(No.CF20-0612).
文摘Lanthanides(Ln^(3+))doped luminescent materials play critical roles in lighting and display techniques.While increasing experimental and theoretical research have been carried out on aluminate-based phosphors for white light-emitting diodes(WLEDs)over the past decades,most investigation was mainly focused on their luminescent properties;therefore,the local structure of the light emission center remains unclear.Especially,doping-induced local composition and structure modification around the luminescent centers have yet to be unveiled.In this study,we use advanced electron microscopy techniques including electron diffraction(ED),high-resolution transmission electron microscopy(HRTEM),high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),in combination with energy dispersive X-ray spectroscopy(EDX)and electron energy loss spectroscopy(EELS),to reveal atomically resolved crystalline and chemical structure of Ce^(3+)doped CaYAlO4.The microscopic results prove substantial microstructural and compositional inhomogeneities in Ce^(3+)doped CaYAlO_(4),especially the appearance of Ce dopant clustering and Ce^(3+)/Ce^(4+)valence variation.Our research provides a new understanding the structure of Ln^(3+)doped luminescent materials and will facilitate the materials design for next-generation WLEDs luminescent materials.
基金the CAS Priority Research program(XDB20010300,XDA21010204)National Natural Science Foundation of China(201501178)Natural Science Foundation of Fujian Province(2017H0048)。
文摘A series of YAG:Ce,Mn transparent ceramics were prepared via a solid-state reaction-vacuum sintering method.The effects of various Mn^2+–Si4+pair doping levels on the structure,transmittance,and luminescence properties were systematically investigated.These transparent ceramics have average grain sizes of 10–16μm,clean grain boundaries,and excellent transmittance up to 83.4%at 800 nm.Under the excitation of 460 nm,three obvious emission peaks appear at 533,590,and 745 nm,which can be assigned to the transition 5 d→4 f of Ce^3+and 4 T1→6 A1 of Mn^2+.Thus,the Mn^2+–Si4+pairs can effectively modulate the emission spectrum by compensating broad orange-red and red spectrum component to yield high quality warm white light.After the optimized YAG:Ce,Mn transparent ceramic packaged with blue light-emitting diode(LED)chips,correlated color temperature(CCT)as low as 3723 K and luminous efficiency(LE)as high as 96.54 lm/W were achieved,implying a very promising candidate for application in white light-emitting diodes(WLEDs)industry.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50872091 and 21076161)the Tianjin Municipal Sci/Tech. Commission, China (Grant Nos. 10SYSYJC28100 and 2006ZD30)the Tianjin Municipal Higher Education Commission, China (Grant No. 20110304)
文摘We report a unique red light-emitting Eu-doped borosilicate glass to convert color for warm white light-emitting diodes. This glass can be excited from 394 nm-peaked near ultraviolet light, 466 nm-peaked blue light, to 534 nm- peaked green light to emit the desired red light with an excellent transmission in the wavelength range of 400-700 nm which makes this glass suitable for color conversion without a great cost of luminous power loss. In particular, when assembling this glass for commercial white light-emitting diodes, the tested results show that the color rendering index is improved to 84 with a loss of luminous power by 12 percent at average, making this variety of glass promising for inorganic "remote-phosphor" color conversion.