In this review paper, we introduce a self-phase controlled stimulated Brillouin scattering phase conjugate mirror(SCSBS-PCM) and the Kumgang laser. The SC-SBS-PCM was proposed and demonstrated its success at the acade...In this review paper, we introduce a self-phase controlled stimulated Brillouin scattering phase conjugate mirror(SCSBS-PCM) and the Kumgang laser. The SC-SBS-PCM was proposed and demonstrated its success at the academic low power level, ~100 mJ@10 Hz. The Kumgang laser is under development to verify whether the SC-SBS-PCM is operable at the k W level. It is a 4 kW beam combination laser combining four 1 k W beams using the SC-SBS-PCM. If the Kumgang laser functions successfully, it will be the most important step towards a Dream laser, a hypothetical laser with unlimited power and a high repetition rate.展开更多
Pulses as short as 8.1 fs were generated from a blue laser-diode-pumped Kerr-lens mode-locked Ti:sapphire oscillator, with an average power of 27 m W and a repetition rate of 120.6 MHz. The full width at half-maximum ...Pulses as short as 8.1 fs were generated from a blue laser-diode-pumped Kerr-lens mode-locked Ti:sapphire oscillator, with an average power of 27 m W and a repetition rate of 120.6 MHz. The full width at half-maximum exceeds 146 nm, benefitting from the dispersion management by a combination of a low-dispersion fused silica prism pair and a series of double-chirped mirrors. To the best of our knowledge, this is the first time to generate sub-10-fs pulses from a laser diode directly pumped Ti:sapphire oscillator.展开更多
A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors,...A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors, such as laser pulse energy, repetition rate and argon flow rate, that influence laser-induced breakdown spectroscopy (LIBS) analytical performance are investigated in detail. Under the optimal experiment conditions, the relative standard deviations for C, Si, Mn, Ni, Cr and Cu are 3.3%-8.9%, 0.9%-2.8%, 1.2%-4.1%, 1.7%-3.0%, 1.1%-3.4% and 2.5%-8.5%, respectively, with the corresponding relative errors of 1.1%-7.9%, 1.0%-6.3%, 0.4%-3.9%, 1.5%-6.3%, 1.2%-4.0% and 1.2%-6.4%. Compared with the results of the traditional spark discharge optical emission spectrometry technique, the analytical performance of LIBS is just a little inferior due to the less stable laser-induced plasma and smaller amount of ablated sample by the laser. However, the precision, detection limits and accuracy of LIBS obtained in our present work were sufficient to meet the requirements for process analysis. These technical performances of higher stability of output energy and longer service life for DPSSL, in comparison to the Q-switch laser pumped by xeon lamp, qualify it well for the real time online analysis for different industrial applications.展开更多
基金supported by the ‘Dual Use Technology Program’ at the Agency for Defense Development (ADD) of the Republic of Korea (UM12012RD1)
文摘In this review paper, we introduce a self-phase controlled stimulated Brillouin scattering phase conjugate mirror(SCSBS-PCM) and the Kumgang laser. The SC-SBS-PCM was proposed and demonstrated its success at the academic low power level, ~100 mJ@10 Hz. The Kumgang laser is under development to verify whether the SC-SBS-PCM is operable at the k W level. It is a 4 kW beam combination laser combining four 1 k W beams using the SC-SBS-PCM. If the Kumgang laser functions successfully, it will be the most important step towards a Dream laser, a hypothetical laser with unlimited power and a high repetition rate.
基金supported by the National Key R&D Program of China(No.2016YFB0402105)
文摘Pulses as short as 8.1 fs were generated from a blue laser-diode-pumped Kerr-lens mode-locked Ti:sapphire oscillator, with an average power of 27 m W and a repetition rate of 120.6 MHz. The full width at half-maximum exceeds 146 nm, benefitting from the dispersion management by a combination of a low-dispersion fused silica prism pair and a series of double-chirped mirrors. To the best of our knowledge, this is the first time to generate sub-10-fs pulses from a laser diode directly pumped Ti:sapphire oscillator.
基金supported by the Development Fund of National Autonomous Demonstration Innovation Zone of Shandong Peninsula(Grant No.ZCQ17104)the National Key Research and Development Program of China(Grant No.2017YFB0305400)‘double hundred plan’ Yantai talent funding project
文摘A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors, such as laser pulse energy, repetition rate and argon flow rate, that influence laser-induced breakdown spectroscopy (LIBS) analytical performance are investigated in detail. Under the optimal experiment conditions, the relative standard deviations for C, Si, Mn, Ni, Cr and Cu are 3.3%-8.9%, 0.9%-2.8%, 1.2%-4.1%, 1.7%-3.0%, 1.1%-3.4% and 2.5%-8.5%, respectively, with the corresponding relative errors of 1.1%-7.9%, 1.0%-6.3%, 0.4%-3.9%, 1.5%-6.3%, 1.2%-4.0% and 1.2%-6.4%. Compared with the results of the traditional spark discharge optical emission spectrometry technique, the analytical performance of LIBS is just a little inferior due to the less stable laser-induced plasma and smaller amount of ablated sample by the laser. However, the precision, detection limits and accuracy of LIBS obtained in our present work were sufficient to meet the requirements for process analysis. These technical performances of higher stability of output energy and longer service life for DPSSL, in comparison to the Q-switch laser pumped by xeon lamp, qualify it well for the real time online analysis for different industrial applications.