Based on the potential theory and perturbation techniques, the problem of second-order sloshing in a three-dimensional tank in combination with surge and sway motions is analyzed. When excitation is applied in both ho...Based on the potential theory and perturbation techniques, the problem of second-order sloshing in a three-dimensional tank in combination with surge and sway motions is analyzed. When excitation is applied in both horizontal directions, the second-order resonance can occur when the sum frequency or the difference frequency of any two excitation components is equal to one of the natural frequencies. The resonance can also occur when the sum or difference frequency of one of the excitation frequencies and one of the natural frequencies is equal to another natural frequency.展开更多
基金supported by the National Science Foundation of China(Grant No.51079082)
文摘Based on the potential theory and perturbation techniques, the problem of second-order sloshing in a three-dimensional tank in combination with surge and sway motions is analyzed. When excitation is applied in both horizontal directions, the second-order resonance can occur when the sum frequency or the difference frequency of any two excitation components is equal to one of the natural frequencies. The resonance can also occur when the sum or difference frequency of one of the excitation frequencies and one of the natural frequencies is equal to another natural frequency.