Dim target detection from sea clutter is one of the difficult topics in ocean remote sensing application. By aiming at the shortcoming of false alarms when using track before detect (TBD) based on dynamic programmin...Dim target detection from sea clutter is one of the difficult topics in ocean remote sensing application. By aiming at the shortcoming of false alarms when using track before detect (TBD) based on dynamic programming, a new discrimination method called statistics of direction histogram (SDH) is proposed, which is based on different features of trajectories between the true target and false one. Moreover, a new series of discrimination schemes of SDH and Local Extreme Value method (LEV) are studied and applied to simulate the actually measured radar data. The results show that the given discrimination is effective to reduce false alarms during dim targets detection.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61001137)the Pre-Research Foundation(Grant No.9140A07020311HK0116)
文摘Dim target detection from sea clutter is one of the difficult topics in ocean remote sensing application. By aiming at the shortcoming of false alarms when using track before detect (TBD) based on dynamic programming, a new discrimination method called statistics of direction histogram (SDH) is proposed, which is based on different features of trajectories between the true target and false one. Moreover, a new series of discrimination schemes of SDH and Local Extreme Value method (LEV) are studied and applied to simulate the actually measured radar data. The results show that the given discrimination is effective to reduce false alarms during dim targets detection.
文摘复杂背景抑制是天基红外预警系统中红外弱小目标探测技术的一个关键环节。为降低复杂背景下杂波干扰,提高目标检测精度,利用非下采样轮廓波变换(NSCT,non-subsampled contourlet transform)的多尺度分解及多方向分解特性以及图像矩阵奇异值分解(SVD,singular value decomposition)不同奇异值代表图像不同能量信息的特点,提出了联合NSCT和SVD的红外图像背景的抑制方法。首先依据非下采样轮廓波变换思想对红外原始图像进行多尺度多方向分解,得到与原始图像同样大小的不同尺度和不同方向上的子带图像,然后,利用奇异值分解的中序部分奇异值调整各子带图像矩阵系数以区分目标和背景杂波,最后对调整后各子带系数组成的矩阵施加NSCT逆变换,最终获得抑制背景处理后的图像。对比实验表明,该方法能够在低信噪比环境下有效抑制复杂背景及边缘,突显目标,降低虚警率。