The present work deals with the computation of the gas-solid two-phase flow pressure drop across thin and thick orifices for a vertically downward flow configuration at the higher limits of a dilute phase flow situati...The present work deals with the computation of the gas-solid two-phase flow pressure drop across thin and thick orifices for a vertically downward flow configuration at the higher limits of a dilute phase flow situation(0.01≤αs,in≤0.10).The Eulerian-Eulerian(two-fluid)model has been used in conjunction with the kinetic theory of granular flow with a four-way coupling approach.The validation of the solution process has been performed by comparing the computational result with the existing experimental data.It is observed that the two-phase flow pressure drop across the orifice increases with an increase in the thickness of the orifice,and the effect is more prominent at higher solid loading.The pressure drop is found to increase with an increase in the solid volume fraction.An increase in the Reynolds number or the area ratio increases the pressure drop.An increase in the size of the particles reduces the pressure drop across the orifice at both small and relatively large solid volume fractions.Finally,a two-phase multiplier has been proposed in terms of the relevant parameters,which can be useful to evaluate the gas-solid two-phase flow pressure drop across the orifice and can subsequently help to improve the system performance.展开更多
Gas-solid two-phase flow in a 90? bend has been studied numerically. The bend geometry is squared cross section of (0.15 m × 0.15 m) and has a turning radius of 1.5 times the duct's hydraulic diameter. The so...Gas-solid two-phase flow in a 90? bend has been studied numerically. The bend geometry is squared cross section of (0.15 m × 0.15 m) and has a turning radius of 1.5 times the duct's hydraulic diameter. The solid phase consists of glass spheres having mean diameter of 77 μm and the spheres are simulated with an air flowing at bulk velocity of 10 m/s. A computational fluid dynamic code (CFX-TASCflow) has been adopted for the simulation of the flow field inside the piping and for the simulation of the particle trajectories. Simulation was performed using Lagrangian particle-tracking model, taking into account one-way coupling, combined with a particle-wall collision model. Turbulence was predicted using k-ε model, wherein additional transport equations are solved to account for the combined gas-particle interactions and turbulence kinetic energy of the particle phase turbulence. The computational results are compared with the experimental data present in the literature and they were found to yield good agreement with the measured values.展开更多
文摘The present work deals with the computation of the gas-solid two-phase flow pressure drop across thin and thick orifices for a vertically downward flow configuration at the higher limits of a dilute phase flow situation(0.01≤αs,in≤0.10).The Eulerian-Eulerian(two-fluid)model has been used in conjunction with the kinetic theory of granular flow with a four-way coupling approach.The validation of the solution process has been performed by comparing the computational result with the existing experimental data.It is observed that the two-phase flow pressure drop across the orifice increases with an increase in the thickness of the orifice,and the effect is more prominent at higher solid loading.The pressure drop is found to increase with an increase in the solid volume fraction.An increase in the Reynolds number or the area ratio increases the pressure drop.An increase in the size of the particles reduces the pressure drop across the orifice at both small and relatively large solid volume fractions.Finally,a two-phase multiplier has been proposed in terms of the relevant parameters,which can be useful to evaluate the gas-solid two-phase flow pressure drop across the orifice and can subsequently help to improve the system performance.
文摘Gas-solid two-phase flow in a 90? bend has been studied numerically. The bend geometry is squared cross section of (0.15 m × 0.15 m) and has a turning radius of 1.5 times the duct's hydraulic diameter. The solid phase consists of glass spheres having mean diameter of 77 μm and the spheres are simulated with an air flowing at bulk velocity of 10 m/s. A computational fluid dynamic code (CFX-TASCflow) has been adopted for the simulation of the flow field inside the piping and for the simulation of the particle trajectories. Simulation was performed using Lagrangian particle-tracking model, taking into account one-way coupling, combined with a particle-wall collision model. Turbulence was predicted using k-ε model, wherein additional transport equations are solved to account for the combined gas-particle interactions and turbulence kinetic energy of the particle phase turbulence. The computational results are compared with the experimental data present in the literature and they were found to yield good agreement with the measured values.