期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度学习的场景文本检测算法研究 被引量:2
1
作者 熊炜 艾美慧 +4 位作者 杨荻椿 李利荣 刘敏 王娟 曾春艳 《光电子.激光》 CAS CSCD 北大核心 2021年第7期728-734,共7页
针对自然场景中任意形状文本图像因文本行难以区分导致的信息丢失问题,提出了一种基于深度学习的场景文本检测算法。首先构建特征提取模块,使用Resnet50作为骨干网络,在增加跨层连接的金字塔网络结构中引入并联的空洞卷积模块,以提取更... 针对自然场景中任意形状文本图像因文本行难以区分导致的信息丢失问题,提出了一种基于深度学习的场景文本检测算法。首先构建特征提取模块,使用Resnet50作为骨干网络,在增加跨层连接的金字塔网络结构中引入并联的空洞卷积模块,以提取更多语义信息;其次,对得到的特征图进行多尺度特征融合,学习不同尺度的特征;最后预测出不同内核大小的文本实例,并通过尺度扩展逐渐扩大文本行区域,直到得到最终的检测结果。实验结果表明,该方法在SCUT-CTW1500弯曲文本数据集上的准确率、召回率及F1值分别达到88.5%、77.0%和81.3%,相比其他基于分割的算法,该算法对弯曲文本的检测效果良好,具有一定的应用价值。 展开更多
关键词 场景文本检测 深度学习 特征提取 多尺度特征融合 空洞空间金字塔
原文传递
基于空洞空间金字塔池化U-Net的遥感图像多目标检测方法 被引量:2
2
作者 张善文 许新华 齐国红 《弹箭与制导学报》 北大核心 2023年第5期1-8,共8页
针对遥感图像(RSI)中的目标相对较小、形变多样,且包含分布不均匀的非目标和背景等问题,提出一种基于空洞空间金字塔池化U-Net的遥感图像多目标检测方法。该方法利用空洞多尺度卷积提取多尺度目标的分类特征,运用空洞空间池化金字塔模... 针对遥感图像(RSI)中的目标相对较小、形变多样,且包含分布不均匀的非目标和背景等问题,提出一种基于空洞空间金字塔池化U-Net的遥感图像多目标检测方法。该方法利用空洞多尺度卷积提取多尺度目标的分类特征,运用空洞空间池化金字塔模块扩大卷积特征图的感受野,提取更充分的目标特征,并采用注意力机制、残差连接和长跳跃连接充分保留卷积层提取的RSI的敏感特征。在公开遥感图像数据库EORSSD上的实验结果表明,所提出的方法能够从复杂多样的RSI中检测多尺度目标,检测精度为96.56%。 展开更多
关键词 遥感图像多目标检测 空洞多尺度卷积 空洞空间金字塔池化 空洞空间金字塔池化U-Net
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部